

Version 1.1

November 5, 2012

PARCC TECHNOLOGY ARCHITECTURE

TECHNICAL SYSTEMS

ARCHITECTURE

Technical Systems Architecture

REVISION HISTORY

The following revision chart defines the version history for this document.

Revision Date Released To Description

1.0 09/30/12 PARCC States Initial Release

1.1 11/5/12 PARCC Public
Sharepoint Site

Released as support material for Assessment
Administration RFP (IDOE 13-29)

CONTACT
Send questions about this document via http://parcconline.org/contact

Prepared by Pacific Metrics and IBM Corporation for the Partnership for Assessment of
Readiness for College and Careers. Copyright PARCC 2012.

All names and products contained herein are the trademarks or registered trademarks of their
respective holders.

PARCC Technology Architecture Page i

Contents

Executive Summary ... 1

1. Introduction .. 10

1.1 Overview .. 10

1.2 Purpose .. 10

1.3 Scope .. 11

2. Technology Infrastructure Architecture Plan ... 12

2.1 The FURPS Model ... 12

2.2 Hardware, Software, and Network Requirements .. 15

Requirements for Client-side Hardware and Software ... 16

Requirements for Server-side Hardware and Software .. 17

Databases, Data Storage, and Data Archiving ... 17

Types of Databases .. 17

Usage Areas ... 20

Recommendations for PARCC Assessment System Choice of Database Types 21

Data Storage Overview .. 21

Operational Data Store and Data Warehouse Workloads 22

Recommendations for PARCC Assessment System Data Storage 23

Data Archiving .. 23

Server-side Application Platforms ... 23

Other Server-side Application Platforms ... 25

Virtualization .. 26

Network Requirements .. 26

Network Capacity Requirements Model ... 27

Implications of Network Capacity on the Assessment System 31

Low Bandwidth Capacity Mitigation Strategies ... 32

Process Flow Description ... 33

2.3 Component Deployment Options .. 34

Tightly-coupled Components ... 34

Loosely-coupled Components ... 35

Other Component Deployment Options ... 37

System-level Deployment .. 39

PARCC Technology Architecture Page ii

Traditional Hosting... 39

Cloud-based Deployment .. 39

2.4 System Management and Monitoring ... 41

Simple Network Management Protocol—SNMP ... 42

Java Management Extensions – JMX ... 43

Common Event Expression – CEE .. 43

Commercial Monitoring and Management Tools.. 44

IBM Tivoli (www-01.ibm.com/software/tivoli/) .. 44

Zyrion Traverse (www.zyrion.com) ... 45

NimBUS (www.nimsoft.com) ... 45

Open-source Monitoring and Management Tools .. 46

Nagios (www.nagios.org) ... 46

Zenoss (www.zenoss.com) .. 47

Zabbix (www.zabbix.com) ... 47

Middleware and Integration Software .. 47

Web Services (SOAP/REST) .. 50

Middleware and Integration Software Vendor Capabilities and Offerings 51

Oracle Fusion Middleware (www.oracle.com) .. 52

TIBCO ActiveMatrix (www.tibco.com) ... 52

OpenSAF (opensaf.org) .. 52

2.5 Security Requirements for Applications and End-user Access 52

End-user Authentication/Authorization and Access Control .. 53

Regulatory Compliance .. 54

Test Delivery Component Security Concerns .. 54

Web-based Test Client Implementation .. 54

Native Application Test Client Implementation .. 55

2.6 Integration with Existing Technical Environments .. 55

2.7 Development and Testing Processes and Environments .. 57

3. Integration Architecture Plan ... 61

3.1 Data Integration ... 61

Data Integration within PARCC Assessment System Components 61

Data Integration with Member States’ Existing Systems .. 61

3.2 Data Movement ... 62

PARCC Technology Architecture Page iii

3.3 Data Security .. 62

3.4 API Design Guidelines for Vendors .. 65

4. Related Documents ... 67

5. External Sources .. 69

6. Terms and Acronyms .. 71

FIGURES

Figure 1 – Typical Layout of a J2EE Application System Diagram ... 25

Figure 2 – Relative Network Bandwidth Requirements Diagram ... 28

Figure 3 – Example Network Model 1: Estimated Total Size of Test Diagram 29

Figure 4 – Example Network Model 1: Estimated Total Bandwidth Diagram 29

Figure 5 – Example Network Model 2: Estimated Total Size and Bandwidth Diagram 30

Figure 6 – Example Connection Speeds for Different Connection Types Diagram 32

Figure 7 – Example Test-caching Diagram .. 33

Figure 8 – Tightly-coupled, Locally Deployed Application Components Diagram 35

Figure 9 – Loosely-coupled, Remotely Deployed Application Components Diagram 36

Figure 10 – Distributed Component Deployment Diagram .. 38

Figure 11 – Deployment Models in a Cloud Infrastructure Diagram .. 40

Figure 12 – Service Models in a Cloud Infrastructure Diagram .. 41

Figure 13 – Example Network Management System with SNMP Diagram 42

Figure 14 – CEE Application in SNMP and XML SOAP Logging Diagram 44

Figure 15 – Base Architecture of IBM Tivoli Monitoring Software Diagram 45

Figure 16 – Service Component as a Façade Diagram .. 48

Figure 17 – Business Process Orchestration in the Business Process Layer Diagram 49

Figure 18 – Assessment System Component Deployment at Various Levels Diagram 56

Figure 19 – Interactions between Components Deployed at Different Levels Diagram 57

Figure 20 – Recommended Assessment System Development Environment Layout Diagram ... 58

Figure 21 – Recommended Assessment System Testing Environment Layout Diagram 59

Figure 22 – Security in Cloud Deployments Diagram ... 64

PARCC Technology Architecture Page iv

TABLES

Table 1 – Requirements Categorized According to the FURPS Model ... 13

Table 2 – Comparison of Relational Databases and NoSQL Databases .. 20

Table 3 – Comparison of J2EE and .NET Technologies ... 24

Table 4 -- Comparison of SOAP and REST ... 51

Table 5 – Data Security Life Cycle Phases and Activities .. 63

Table 6 – Reference Materials .. 67

Table 7 – Definition of Terms and Acronyms ... 71

PARCC Technology Architecture Page 1

EXECUTIVE SUMMARY

This executive summary condenses the key facts and findings of this document into a more
concise form. It is intended to provide a reasonably complete shorter form of the PARCC
Assessment System technical systems architecture plan that may be read instead of the longer
document. However, the executive summary does not necessarily reflect the full view of the
technical systems architecture plan provided in the full document.

It follows the organizational structure of the document and includes references to key tables
and graphics to help communicate important information.

TECHNOLOGY INFRASTRUCTURE PLAN

This section details the technical systems requirements for the PARCC Assessment System,
including: deployment, system management and monitoring, middleware and integration,
security integration with existing technical environments, and development and testing
processes and environment.

The FURPS Model

The FURPS (Functionality, Usability, Reliability, Performance, and Supportability) model, a
widely used tool for identifying and categorizing the requirements of any system, was used to
categorize the high-level functional requirements for the assessment system defined in High-
level Application Architecture. Table 1 – Requirements Categorized According to the FURPS
Model on page 13 provides the breakdown of functional requirements by FURPS categories.

Hardware, Software, and Network Requirements

The PARCC Assessment System needs to be able to run on a variety of client-side and server-
side hardware and software platforms. Its implementation must be able to meet key
technology priorities defined in Key Technology Priorities Summary.

In making client-side hardware decisions for a state or district, all hardware decisions should be
based on the instructional needs of schools and students. Districts should rely on local expert
judgments and discussions with appropriate authorities to determine the hardware that is most
appropriate to deliver quality instruction and to support individual students.

In making server-side hardware decisions, Windows and enterprise-class Linux distributions can
be used in the assessment system. Both operating systems have licensing costs that include
support options, which provide upgrades and security patches. Linux has an open-source
license. The speed and size of the central processing unit (CPU) caches are of particular
importance for overall server performance. Other factors which should be considered are
supportability, compatibility, and virtual machine (VM) support.

PARCC Technology Architecture Page 2

Databases, Data Storage, and Data Archiving

There are three basic types of databases available in the market today: relational databases
(RDBs), object-oriented databases (OODs), and NoSQL databases. They differ in the way the
logical data entities are organized. RDBs are the dominant databases today, and, when properly
designed and implemented, they can be used for many types of data workloads. However, both
alternatives provide capabilities that might be useful in the assessment system.

Data Storage

There are many considerations when sizing and configuring the storage subsystem for the
assessment system. Similarly to server choices, the decision-making in this area will be
determined by the overall type of system deployment. If the system is deployed in a cloud
infrastructure or in a third-party data center, many decisions will be determined by the
cloud/hosting vendor offerings and the storage specifications will be negotiated and written
into the contract.

- To provide optimal storage performance, the assessment system storage implementation
should ideally use a storage area network (SAN) with low overall disk latency. For optimum
performance, the SAN should include either solid-state drives (SSDs) or fast Small Computer
System Interface (SCSI) disk drives.

- The Operational Data Store (ODS) and Data Warehouse (DW) components should use
relational databases because of the stringent requirements for data accuracy and data
integrity. Using a NoSQL database can certainly be explored and prototyped during the
development of these components to determine the feasibility of this approach.

Data Archiving

Data archiving is the process of removing selected data, which is not expected to be referenced
again, from an operational database and putting it into an archive data store, where the data
can be accessed again, if needed. The data design, storage methods, and tuning requirements
for an archive data store are different than those for an operational database. The PARCC
Information Architecture and Data Governance processes will determine what types of data will
be subject to data archiving, when data archiving will occur, how long the data will be retained
in the archive, and when (if ever) the data will need to be destroyed.

Server-side Application Platforms

In the world of server-side application development, there are two major application
development and deployment platforms: Java 2 Enterprise Edition (J2EE) and .NET. Both
application frameworks provide a solid foundation for building enterprise-ready, robust server-
side applications. Table 3 – Comparison of J2EE and .NET Technologies provides a summary
view of these deployment platform options.

Besides J2EE and .NET, there are other popular application platforms (e.g., Ruby on Rails) that
should be explored as possible platforms for development and deployment of loosely-coupled
components.

PARCC Technology Architecture Page 3

Virtualization

Virtualization is the simulation of the software and hardware upon which other software runs.
There are many benefits to using virtualized servers, the main one being increased operational
efficiency, because existing hardware can do more work by putting a greater load on each
computer. In addition to this benefit, desktop virtualization allows the same computer to run
multiple operating systems, which can aid both development and testing efforts. Most
virtualization environments allow changes to be reverted easily, unlike a physical server
environment, in which changes can be hard to track and revert.

To ensure portability of the assessment system component repository, the assessment system
components must be able to deploy and run on both physical and virtualized environments. A
useful tool for comparing virtualization solutions is provided at
www.virtualizationmatrix.com/matrix.php.

Network Requirements

Internet connectivity and network capacity requirements for the PARCC Assessment System will
be fully defined once the development of the test items repository is complete and the designs
of the assessment delivery platform are finalized. Output data from the Technology Readiness
Tool (www.techreadiness.org) will also be taken into consideration when determining network
requirements. A network bandwidth estimation model is presented, which approximates the
network capacity needed per test per student in an effort to determine the network
requirements.

Bandwidth usage may be a concern with tests containing items using video, audio, or other
network-intensive media types. Content pre-loading techniques and HTML5 caching mode
should be explored as options to reduce the network requirements for a test containing such
items.

The Test Client component may mitigate the high-bandwidth items by using pre-loading or
caching techniques.

Component Deployment Options

The internal components of the PARCC Assessment System need to be flexible in their
deployment to provide the diversity of hosting options. Component deployment refers to how
the component functionality is packaged and exposed to other components. Components are
usually deployed within some kind of application server running under a particular operating
system on a physical machine.

Depending on their deployment and how they talk to each other, two components can be
tightly-coupled or loosely-coupled.

Tightly-coupled Components

Tightly-coupled components are usually deployed within the same application server, talk to
each other via local calls, and often share common persistence storage (e.g., a database). There

http://www.virtualizationmatrix.com/matrix.php
http://www.techreadiness.org/

PARCC Technology Architecture Page 4

are advantages to tight-coupling that include better performance and lower implementation
costs. However, the disadvantages include reduced flexibility and reliability.

Loosely-coupled Components

Loosely-coupled application components are each deployed in a separate application server
running on a separate physical machine. They typically talk to each other via Web service calls.
The key advantage of loose-coupling is greater flexibility in technology choices. However, the
disadvantages include generally higher bandwidth requirements and reduced performance.

System-level Deployment

The assessment system can utilize traditional or cloud-based system-level provisioning and
deployment.

Traditional Hosting

Traditional hosting of the assessment system will require either the implementation of the full
spectrum of internal IT infrastructure services or outsourcing those services to third-party
hosting providers.

Cloud Hosting

Cloud hosting is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.

There are many advantages of provisioning the assessment system in the cloud, as opposed to
using traditional hosting options. Capacity planning, disaster recovery, availability, and
reliability are system features that a reputable cloud provider will list as part of the cloud
service contract. Costs can also be better allocated and managed, because typically the service
is paid for only when it is actually used.

Further, there are models for deploying cloud hosting that provide different levels of
management and control of the cloud infrastructure:

 Software-as-a-service (SaaS)

 Platform-as-a-service (PaaS)

 Infrastructure-as-a-service (IaaS)

Figure 12 – Service Models in a Cloud Infrastructure Diagram on page 41 summarizes the
service models.

System Management and Monitoring

System management and monitoring will be an essential part of the technical administration of
the PARCC Assessment System. It will also play an important role in maintaining a secure

PARCC Technology Architecture Page 5

environment and enforcing policies (e.g., authorization, privacy, and auditing) and standards
compliance.

A system management and monitoring framework typically involves setting up monitoring
agents on all monitored system entities (e.g., devices, machines), and a central management
server that collects and processes the events generated by the monitoring agents.
Management event information in the assessment system will be published via standard
protocols (i.e., Java Management Extensions [JMX] or Simple Network Management Protocol
[SNMP]) to a central management and monitoring server. This server will also perform health
monitoring that involves collecting data representing the overall technical health conditions of
the system and its components.

 SNMP is the most common system management and monitoring protocol used today. Most
professional-grade hardware devices today come with a built-in SNMP agent.

 JMX is a Java technology for monitoring and managing the performance of the Java Virtual
Machine (JVM) at run-time. It is applicable for Java and J2EE-based applications.

 Common Event Expression (CEE) is a framework that enables collaborative efforts in the
creation of open, practical, and industry-accepted event interoperability standards for
electronic systems.

There is a wide range of commercial and open-source monitoring and management tools that
provide the necessary capabilities for the assessment system.

Middleware and Integration Software

The middleware layer in the PARCC Assessment System Architecture will be built using service-
oriented architecture (SOA) principles and designs. A layered service approach will be used to
package component functionality and expose it as services to be used by other components
and services. The exposed services will be stateless, coarse-grained, and loosely-coupled. The
three layers are:

 Service Component Layer

 Services Layer

 Business Process Layer

Web Services

Web services represent an increasingly popular technique for developing, deploying, and
consuming services in an SOA infrastructure, enabling location transparency by utilizing
registries such as Universal Description, Discover, and Integration (UDDI) for run-time
discovery. The transport for Web services is HTTP/HTTPS. Clients can locate the desired service
dynamically by requesting the service from the registry. The Web services architecture provides
benefits of loose-coupling by providing a mechanism to find, bind, and invoke the service
dynamically.

PARCC Technology Architecture Page 6

Middleware and Integration Software Vendor Capabilities and Offerings

There are numerous software offerings that facilitate the development of middleware:

- Oracle Fusion Middleware (www.oracle.com)
- TIBCO ActiveMatrix (www.tibco.com)
- OpenSAF (opensaf.org)

Security Requirements for Applications and End-user Access

The PARCC Assessment System must enforce stringent security checks and rules involving the
operation of its applications, the storage and transfer of its data, and the controlling of end-
user access.

End-user Authentication/Authorization and Access Control

All PARCC Assessment System end users will be authenticated to the system using a single sign-
on process. Single sign-on (SSO) is the ability for users to access multiple software applications
from multiple sources and vendors by logging in just once with a single username and
password—preferably from any location. Security Assertion Markup Language (SAML) is an
Extensible Markup Language (XML) standard that allows secure Web domains to exchange user
authentication and authorization data. The SAML protocols for single sign-on will be used.

Once authenticated, the users will be authorized to perform specific functions across
assessment system subsystems based on their assigned role. Each role defines what the user
can access and the level of this access.

Regulatory Compliance

An important aspect of assessment system security will be regulatory compliance. There are
two federal laws that relate to the security implementation of the assessment system, namely
Family Educational Rights and Privacy Act (FERPA) and Children’s Online Privacy Protection Act
(COPPA).

Test Delivery Component Security Concerns

The Test Delivery component has specific security concerns that should be addressed. To
prevent fraud and ensure the validity of the test, special requirements must be considered
regarding the test environment. In order to provide a secure test environment using a Web
browser as the test client, the desktop and operating system environment, where the browser
is running, must be locked-down, so that students taking the test can access and control only
one window on the screen (i.e., the one with the test).

There is a trade-off between the ability to satisfy all those security concerns in their entirety,
and the implementation of the Test Client delivering the test.

Web-based Test Client Implementation

Standard Internet browsers (including popular browsers such as Internet Explorer, Firefox,
Chrome, Safari, and Opera) have all been designed with great end-user interface flexibility and

http://www.oracle.com/
http://www.tibco.com/
http://opensaf.org/link/linkshow.asp?link_id=151213

PARCC Technology Architecture Page 7

convenience—but they all have very limited features for tightening the security of the end-user
experience.

Native Application Test Client Implementation

In this type of implementation, the test client is actually a native application written specifically
for the target operating system (e.g., Windows or Linux). Typically, the native application has its
own data processing and data persistence capabilities, and can provide much greater control
over the security of the desktop environment where the test will be delivered. However, there
is a significant cost in terms of development, deployment, and configuration efforts when using
a native application test client for delivering PARCC Assessment System tests.

Integration with Existing Technical Environments

The PARCC Assessment System will need to integrate with existing technical environments at
the state, district, and school levels. Depending on the deployment model for some or all of the
assessment system components, certain components can be deployed at the state, district, or
school levels for increased performance (e.g., network bandwidth) or other considerations.
External and/or existing components (e.g., state student information system [SIS] or item/test
authoring systems) are always going to be deployed as per the specifications by the particular
vendor that produces the component—which may or may not be the PARCC deployment level.
Regardless of the component deployment level, interoperability among components will not be
affected and will be executed according to the overall component interaction architecture.

Development and Testing Processes and Environments

While not required, it would be beneficial to PARCC if each vendor developing PARCC
components followed development and testing processes based on established frameworks,
tools, and methodologies.

Figure 20 – Recommended Assessment System Development Environment Layout Diagram on
page 58 shows a recommended layout for the PARCC Assessment System development
environment.

Figure 21 – Recommended Assessment System Testing Environment Layout Diagram on page
59 shows a recommended layout for a testing (validation) environment for the assessment
system.

INTEGRATION ARCHITECTURE PLAN

The Integration Architecture Plan outlines guidelines and recommended approaches to
integration, movement, and security of the PARCC Assessment System data, both inside and
outside of the assessment system. It also provides a technology integration template to be used
by vendors to ensure that their offerings comply with assessment system architecture.

Data Integration

The assessment system will need to integrate data from a variety of sources within the
assessment system itself as well as external data sources (e.g., student information systems,

PARCC Technology Architecture Page 8

item and test authoring systems, scoring engines, and state-level data warehouses). As
described in Interoperability Standards Review, industry-standard high-level data standards
such as Accessible Portable Item Protocol (APIP), Question and Test Interoperability (QTI), and
Common Education Data Standards (CEDS) will be used for data representation and data
transfer between those systems.

Data Integration within PARCC Assessment System Components

Data in the PARCC Assessment System will be stored in two major data hubs: the Operational
Data Store (ODS) and the Data Warehouse (DW). Individual components may opt to use their
own independent data stores to keep transient data while the component is performing its
functions.

Data Integration with Member States’ Existing Systems

Existing student information systems at the state level will provide core student data and other
data needed for the operation of the PARCC Assessment System. The test registration process
executed through the Test Registration component will use the industry-standard Schools
Information Framework (SIF) protocol to pull data from the state student information system.
This could be implemented as either a real-time or an asynchronous batch process, depending
on the availability of the state SIS.

Data Movement

The Data Movement Model section in the Information Architecture document outlines the
different types of data produced and consumed in the assessment system as well as how this
data moves through the different components and subsystems, both internal and external,
using industry-standard data-exchange protocols such as APIP and QTI.

Data movement between assessment system components during real-time interactions, such
as submitting authored item data from the Item Authoring component to the Item/Test Bank
component or submitting items from the Test Delivery component to the Operational Data
Store component, can be implemented via standard service-oriented technology using Web
services (i.e., SOAP/REST).

Moving data from the Operational Data Store component to the Data Warehouse component
would be best accomplished using an extract, transform, and load (ETL) tool. ETL tools are used
to provide continuous or batch-level movement of data from one data source/data store to
another.

Data Security

Data storage and movement in the assessment system need to adhere to applicable regulatory
constraints (e.g., FERPA and COPPA). The necessary security mechanisms need to be in place
when storing and moving most data entities, especially student data and test results data.
Hashing and encryption techniques will be used when sensitive data is stored in all data stores,
and secure data transfer protocols (e.g., SSL, HTTPS, and WS-Security) will be used when data is

PARCC Technology Architecture Page 9

transferred from one component to another. In addition, any transient data should be subject
to periodic purging to minimize the risks of unauthorized access.

Table 5 – Data Security Life Cycle Phases and Activities on page 63 shows the data security life
cycle phases.

API Design Guidelines for Vendors

The application programming interface (API) is essentially the programming contract between
two entities (i.e., systems, components, etc.) communicating with one another using an agreed-
upon protocol. This protocol would specify, for example, the name of the operations, the
sequence in which they execute, and the format of the data exchanged.

Vendors who will be developing external components interfacing with the PARCC Assessment
System, as well as vendors who will be developing some or all of the internal components of
the assessment system, need to incorporate a number of general guidelines when designing
their components so that they will be compatible with the assessment system architecture.

REFERENCE SECTIONS

The remaining sections provide reference information to assist the reader:

- Related Documents. Lists the supporting PARCC Assessment System Architecture
documents referenced in this document.

- External Sources. Lists the outside sources (including Web sites) used in the preparation of
this document.

- Terms and Acronyms. Lists the acronyms used in this document along with their definitions.

PARCC Technology Architecture Page 10

1. INTRODUCTION

1.1 OVERVIEW

This document describes the technical architecture aspects of the PARCC Assessment System in
the form of high-level requirements, recommendations, technical diagrams, design guidelines
and specifications, and standard templates. It also addresses the topic of integrating existing
technology environments at the state, district, and school levels into the PARCC Assessment
System. This document contains these sections:

 Technology Infrastructure Architecture Plan. This section focuses on the technology
infrastructure for the PARCC Assessment System. It begins by presenting the FURPS model,
which is useful in analyzing technical system requirements, followed by an overview of the
hardware, software, and network requirements. It then focuses on component deployment
options; system management and monitoring approaches and tools; middleware and
integration software; security requirements; integration with existing technical
environments; and, finally, coverage of the development and testing processes and
environments.

 Integration Architecture Plan. This section outlines the guidelines and recommended
approaches to integration, movement, and security of the PARCC Assessment System data,
inside and outside of the assessment system. It also provides a technology integration
template to be used by vendors to ensure that their offerings comply with the assessment
system architecture.

 Related Documents. Lists the supporting PARCC Assessment System Architecture
documents referenced in this document.

 External Sources. Lists the outside sources (including Web sites) used in the preparation of
this document.

 Terms and Acronyms. Provides definitions for the terms and acronyms used in this
document.

1.2 PURPOSE

The purpose of this document is to address the PARCC Assessment System Architecture
Deliverable 7.1.A.5.A/B: Technical Systems Architecture Plan as defined in the Florida
Department of Education ITN 2012-22. It provides technical architecture recommendations,
requirements, and guidelines for the PARCC Assessment System. It is part of a set of documents
that provide a high-level view of the assessment system.

PARCC Technology Architecture Page 11

1.3 SCOPE

This document focuses on section 7.1.A.5.A/B: Technical Systems Architecture Plan in the
Florida Department of Education ITN 2012-22. However, it also addresses topics in relevant
sections from these additional documents:

- Technology Architecture, Interoperability Standards Development and System
Implementation Services – Technical Reply

- PARCC Assessment System Architecture – Work Plan for Part A

The technical architecture recommendations, requirements, and guidelines in this document
are based on PARCC Assessment System key technology priorities and architectural
requirements as outlined in the following PARCC Assessment System Architecture documents:

- Key Technology Priorities Summary

- High-level Application Architecture

- Information Architecture

- Interoperability Standards Review

PARCC Technology Architecture Page 12

2. TECHNOLOGY INFRASTRUCTURE ARCHITECTURE PLAN

This section focuses on the technology infrastructure for the PARCC Assessment System. It
begins by presenting the FURPS model, which is useful in analyzing technical system
requirements, followed by an overview of the hardware, software, and network requirements.
The section then focuses on component deployment options; system management and
monitoring approaches and tools; middleware and integration software; security requirements;
integration with existing technical environments; and, finally, coverage of the development and
testing processes and environments.

2.1 THE FURPS MODEL

The FURPS model is a useful tool for identifying and categorizing the requirements of any
system. The acronym comes from the names of the five categories used to classify the system
requirements: Functionality, Usability, Reliability, Performance, and Supportability. These
categories capture both functional and non-functional business requirements.

 Functionality Requirements. Define what the system must do, including the features and
capabilities of the system, most often defined as use cases or user stories.

 Usability Requirements. Define the user interface requirements for the system, its
navigation, look-and-feel, accessibility, online help facilities, and other visual and non-visual
features.

 Reliability Requirements. Define the system’s availability (i.e., uptime), the accuracy of the
system’s calculations, and the ability of the system to recover from failures.

 Performance Requirements. Address system behavior with respect to time and resources
and define characteristics such as response time, throughput, and scalability.

 Supportability Requirements. Define the ability to monitor and maintain the system, and
include testability, configurability, upgradeability, and ability to interface with external
systems.

Table 1 – Requirements Categorized According to the FURPS Model illustrates the applicability
of the requirements of the PARCC Assessment System to the FURPS model. Most of the
functionality requirements for the assessment system are covered in detail in High-level
Application Architecture in the form of business use cases that outline the high-level system
flows and functionality. The table also lists the derived requirements from the Key Technology
Priorities Summary document.

PARCC Technology Architecture Page 13

Table 1 – Requirements Categorized According to the FURPS Model

Requirement F U R P S

Business use cases and high-level application requirements as captured in
High-level Application Architecture.

X X

BR-01. The assessment system shall be based on an open architecture with
well-defined data and interface standards.

 X

BR-02. The assessment system shall be open, flexible, and scalable and
easily integrate with other systems.

 X

BR-03. The assessment system shall minimize bandwidth requirements. X

BR-04. The assessment system should be able to incorporate and
interoperate with existing state and local systems.

 X

BR-05. The assessment system should be accessible using a standard Web
browser with an Internet connection.

 X

BR-06. The assessment system should operate with devices that comply
with the Technology Guidelines for PARCC Assessments v.1.0.

 X X

BR-07. The assessment system shall support multiple hosting options, and
support components distributed at the school, district, state, or
PARCC level.

 X X

BR-08. The PARCC assessment system shall provide the ability for states to
select an external infrastructure provider to host an instance of the
PARCC assessment system or deploy components of the PARCC
assessment system into their own infrastructure.

 X X

BR-09. The assessment system shall provide tools or services that deliver
full functionality to all stakeholders regardless of their IT
infrastructure and capability.

 X

BR-10. The assessment system shall provide Recovery Point Objectives for
critical systems and data.

 X

BR-11. The assessment system will store, backup, and recover assessment
system data in a distributed environment.

 X

PARCC Technology Architecture Page 14

Requirement F U R P S

BR-12. The assessment system should utilize a finalized version of the APIP
1.0 standard for item interoperability between components that
transfer item data.

 X X

BR-13. The assessment system shall comply with the accessibility
requirements that the components must satisfy.

 X

BR-15. The assessment system shall incorporate a centralized PARCC-level
Item/Test Bank.

X

BR-16. The Item/Test Bank shall store item, form, statistical data, and
metadata for the assessment system.

X

BR-17. The Item/Test Bank shall provide levels of security to support
appropriate user access to items.

X X

BR-18. The assessment system shall provide a comprehensive tool set for
data and metadata management and data quality.

 X

BR-19. The assessment system shall support an integration framework for
interoperating with disparate student information systems.

 X

BR-20. The assessment system will comply with FERPA and COPPA privacy
laws.

X X

BR-21. The assessment system will utilize robust, standards-based systems
for data storage.

X X

BR-22. The assessment system will utilize guaranteed message
transmission technologies.

 X

BR-23. The assessment system will utilize and enforce published data
standards and formats.

 X

BR-24. The hosting facility should provide monitoring systems and physical
access control through multifactor authentication and physical
system segregation.

 X X X

BR-25. The physical hardware of the assessment system should enforce
staff access protocols, user access controls, and encryption
strategies for sensitive data at rest.

X X

PARCC Technology Architecture Page 15

Requirement F U R P S

BR-26. The network layer of the assessment system shall enforce best-
practice security measures, including utilizing firewalls and secure
transport of encrypted data.

 X X

BR-27. The assessment system components should utilize industry-proven
security standards and protocols.

 X X

BR-28. The assessment system should utilize an identity management
system with role-based user authentication and authorization.

X

BR-29. The assessment system should respond within an average of four
seconds during estimated peak usage.

 X

BR-30. The assessment system should support cloud-based deployment
with auto-scaling to match demand.

 X X

BR-31. The assessment system should be available during an assessment
administration, not including scheduled downtime for maintenance
and upgrades.

 X

2.2 HARDWARE, SOFTWARE, AND NETWORK REQUIREMENTS

The PARCC Assessment System needs to be able to run on a variety of client-side and server-
side hardware and software platforms. Its implementation must be able to meet key
technology priorities defined in Key Technology Priorities Summary, such as system flexibility
(Key Priority #7), multiple hosting options (Key Priority #5), high availability and scalability (Key
Priority #17), and support for varying levels of technology capabilities at the state, district, and
school levels (Key Priority #6). This section outlines the available options for the provisioning of
hardware, software, and network for the PARCC Assessment System.

This section addresses the fundamental technical implementation options corresponding to a
number of use cases in these functional areas (described in High-level Application Architecture):

 004 – Content Movement

 006 – Registration

 007 – Scheduling and Assignment

 008 – Student Delivery

 014 – Data Export

 015 – Report Generation

PARCC Technology Architecture Page 16

REQUIREMENTS FOR CLIENT-SIDE HARDWARE AND SOFTWARE

Currently, the minimum specifications for new system purchases that will satisfy PARCC
Assessment System client-side requirements are:

- Hardware. 1 GHz or faster processor, 1 GB RAM or greater memory, 9.5 inch (10-inch class)
or larger screen size, 1024 x 768 or better screen resolution.

- Operating Systems. Mac 10.7, Windows 7, Linux (Ubuntu 11.10, Fedora 16), Apple iOS,
Android 4.0, Chrome OS.

- Network. Must be able to connect to the Internet via either wired or wireless network.
- Software. Standard Internet browser. Supported browser versions will be determined later.

All hardware decisions should be based on the instructional needs of schools and students.
Some students may need hardware that exceeds these minimum guidelines, and some students
may require qualitatively different hardware. Districts should rely on local expert judgments
and discussions with appropriate authorities to determine the hardware that is most
appropriate to deliver quality instruction and to support individual students.

Test delivery in the PARCC Assessment System needs to accommodate a variety of client
devices, each with different display characteristics and different CPU power available for
processing graphics, animations, and video. Pacific Metrics and IBM expect that rendering of
traditional test item content will be fully supported across all client devices. However,
rendering interactive content, associated with the so-called technology-enhanced items (TEIs),
might present some challenges in several phases of the TEI life cycle, specifically authoring,
distribution, storage, and delivery. There are several competing technologies that can provide
Web-based delivery of TEI interactive content: Adobe Flash, Microsoft Silverlight, Oracle Java
FX/Applets, and HTML5/JavaScript/CSS. All except HTML5/JavaScript/CSS are proprietary
technologies that require a corresponding browser plugin to be installed. HTML5 is increasingly
becoming the standard technology for delivering interactive content across all devices and
operating systems.

The recommended option for interactive content delivery in the PARCC Assessment System is
the HTML5/JavaScript/CSS trio of open standards. Therefore, the item authoring tools should
support output/export to HTML5/JavaScript/CSS.

There are several content authoring platforms that can either directly create and edit HTML5
content, or publish their native content to HTML5 format. Among them are:

 Adobe Captivate 6 – www.adobe.com/products/captivate.html

 Adobe Edge – labs.adobe.com/technologies/edge/ and edge.adobe.com/whatisedge.html

 IBM Maqetta – www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-
HTML5-Tool-as-OpenSource-Answer-to-Flash-Silverlight-669762/

More information about specific multimedia data standards can be found in the Technology
Standards and Protocols Options document.

http://www.adobe.com/products/captivate.html
labs.adobe.com/technologies/edge/
http://edge.adobe.com/whatisedge.html
http://www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-HTML5-Tool-as-OpenSource-Answer-to-Flash-Silverlight-669762/
http://www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-HTML5-Tool-as-OpenSource-Answer-to-Flash-Silverlight-669762/

PARCC Technology Architecture Page 17

REQUIREMENTS FOR SERVER-SIDE HARDWARE AND SOFTWARE

Any hardware capable of running the selected server-side application platform (see “Server-
side Application Platforms” on page 23) should satisfy the server-side hardware needs of the
PARCC Assessment System. Also, depending on the selected deployment model (see “System-
level Deployment” on page 39), server-side hardware may be a choice made by the cloud
infrastructure provider or the third-party host. The hardware specifications details for PARCC
Assessment System server-side hardware, hosted on third-party premises (whether traditional
or cloud-based), will be defined in the vendor contract and should be provisioned in accordance
with the service level agreements (SLAs) that will be part of that contract.

Similarly, operating system choices on the server side will depend on the deployment options
and the application platform choice.

 For .NET, Windows is the only option.

 For J2EE, Windows or Unix-like operating systems can be chosen.

Windows and enterprise-class Linux distributions can be used in the PARCC Assessment System.
Both operating systems have licensing costs that include support options, which provide
upgrades and security patches. Linux has an open-source license, but companies like Red Hat
provide enterprise-grade commercially backed Linux distributions.

Some factors to consider in evaluating server-side hardware include: CPU clock-speed, cache
size, number of CPUs, number of cores, memory size, and disk input/output (I/O) performance.
The speed and size of the CPU caches are of particular importance for overall server
performance. Other factors that should be considered are supportability, compatibility, and VM
support.

DATABASES, DATA STORAGE, AND DATA ARCHIVING

Types of Databases

There are several basic types of databases available in the market today. They differ in the way
the logical data entities are organized.

Relational Databases (RDBs)

RDBs organize the data entities in tables consisting of rows and fields. In an enterprise-class
RDB, there would typically be hundreds of tables and many thousands of relations describing
how the data entities logically relate to each other. Structured Query Language (SQL) is the
language used to manipulate (i.e., create, delete, update, and retrieve) the data in a relational
database. Most relational databases are engineered to enforce the ACID (atomicity,
consistency, isolation, and durability) principle, which guarantees reliable database transactions
even in the case of adverse conditions (e.g., crashes or power loss).

RDBs are the dominant databases today, and, when properly designed and implemented, they
can be used for many types of data workloads. However, one notable problem of RDBs is the
complexity of setting up redundant server configurations (through database clusters or master-

PARCC Technology Architecture Page 18

slave setups). Another problem is the necessity for using high-end hardware for processing
large quantities of data. Popular commercial RDBs include Oracle Database, IBM DB2, and
Microsoft SQL Server. Popular open-source RDBs include MySQL, PostgreSQL, and SQLite.

Object-oriented Databases (OODs)

OODs try to resolve a major discrepancy between:

- How data is represented in the server’s memory by object-oriented programming (OOP)
languages (e.g., Java, C++, or C#)

AND

- How the same data is represented on a disk drive by relational databases.

Object-oriented languages organize data in a hierarchical fashion using inheritance to provide
code reuse and encapsulation. As described in the previous paragraph, relational databases
organize data in tables consisting of columns and rows. This data impedance mismatch, as it is
known, is typically resolved using object-relational mapper (ORM) software, which is complex
and adds a layer of data propagation because of its own needs (and costs) for development,
testing, and maintenance.

Object-oriented databases try to resolve this problem by representing the data entities in the
database as objects—not tables—which is exactly what the object-oriented languages do in the
server’s memory. Object-oriented databases, however, have had mixed results. While resolving
one type of problem (e.g., eliminate the need for object-relational mapper and reduce the need
for SQL joins), they have problems of their own, including:

 Very tight-coupling with the OOP language code.

 Inability to define ad hoc data integrity constraints.

 Interoperability issues with traditional RDBs.

 Lack of standard tools for database administration.

NoSQL Databases

NoSQL databases began as a movement to avoid expensive commercial RDBs and complex
open-source RDBs when implementing data storage mechanisms for Web 2.0 applications,
which needed fast access to vast volumes of end-user-generated data. The first NoSQL
databases were influenced by Google’s BigTable and Amazon’s Dynamo. The common features
of all NoSQL databases are:

- They do not represent data as related tables—like RDBs do.
- They do not use the SQL language for manipulating data—a notable feature of RDBs

described previously.
- They do not necessarily follow the strict rules for enforcing data integrity and constraints

that RDBs are known for—a process called normalization.

Among the reasons for using NoSQL databases are higher throughput, less complexity,
horizontal scalability, and the ability to run on clusters of commodity hardware. Setting up

PARCC Technology Architecture Page 19

redundancy and high availability with NoSQL databases is a relatively simpler and cheaper
process than the process with relational databases because it does not rely on highly available
hardware, but instead relies on clusters of cheaper servers, each of which does not necessarily
need to have high-availability features. Most notably, handling huge volumes of data in NoSQL
databases seems to be a lot less expensive than using RDBs.

On the downside, NoSQL databases expect relatively simple data models and relationships,
often representing relations among data items as simple key-value pairs or unrelated tuples.

Most NoSQL databases can be categorized as one of these types:

- Key-Value (e.g., MemcacheDB and Riak). Data is represented as key-value pairs, where the
value is a simple data element. This type is primarily used when all access to the database is
by primary key.

- Document (e.g., CouchDB and MongoDB). Data is represented as key-value pairs, where the
value is complex data stored as a single document. The documents often have hierarchical
structure described in corresponding formats such as XML or JSON. The documents can be
similar to each other, but do not have to have the exact same structure.

- Column-family (e.g., Cassandra and Hadoop/HBase). Data is represented as key-value pairs,
where the value is complex data stored in turn as a set of additional key-value pairs, also
known as “column families.” Unlike a relational database, the column families do not need
to have the exact same structure.

- Graph (e.g., Neo4J and HypergraphDB). Data is represented as nodes with properties and
relations between each other. Relations have directions, and nodes can be organized by
relationships. Data stored in nodes and relationships can be stored once, and then
interpreted in different ways based on the relationships.

Table 2 – Comparison of Relational Databases and NoSQL Databases summarizes the pros and
cons of relational and NoSQL databases.

PARCC Technology Architecture Page 20

Table 2 – Comparison of Relational Databases and NoSQL Databases

 Relational databases NoSQL databases

Pros  The relational model is simple in
principle and can handle business
domains with high complexity.

 Provides solid support for ACID,
transactional handling and
reporting.

 Simple, versatile, and standardized
query language (i.e., SQL).

 Standardized APIs for relational
database access in most
programming languages.

 Mostly open-source.

 Simpler data models.

 Horizontal scalability (i.e., data can be
processed easily in parallel).

 Inserting new data is very fast, as well as
simple operations/queries.

 Data model changes do not trigger
comprehensive changes in code.

 Can store complex documents in a
single item of storage.

Cons  Redundancy and scalability setups
can be very complex.

 Large redundant and scalable
databases require powerful,
expensive hardware.

 Extensive data model changes can
have significant impact on existing
code and require extensive
refactoring.

 The simpler data models restrict
applicability to only specific domains.

 Indexing support not as powerful as in
relational systems.

 No ACID properties. Cannot achieve
consistency, availability and partitioning
tolerance at the same time.

 Not very good for reporting purposes.

 No standard APIs or query languages

 Still not very mature technology.

Usage Areas

Based on the pros and cons outlined above, relational databases are typically best to use in
storing transactional data, and for reporting and business intelligence purposes. NoSQL
databases should be considered for logging, caching, session storage and other areas which do
not require complex data models but do require fast storage/retrieval.

PARCC Technology Architecture Page 21

Recommendations for PARCC Assessment System Choice of Database Types

Pacific Metrics and IBM recommend that the Operational Data Store and Data Warehouse
components of the assessment system utilize relational databases in their implementation.
These two components play a crucial role in the majority of use cases involving the movement
and storage of critical PARCC Assessment System data, such as student registrations, rooms,
items, tests, raw scores, test responses, and test results that are described in High-level
Application Architecture in these functional areas:

 006 – Registration

 007 – Scheduling and Assignment

 008 – Student Delivery

 009 – Test Administration

 015 – Report Generation

As described in Information Architecture, the fundamental data is complex, with many common
attributes dispersed across different functional areas, and, as such, can be best described using
a relational data model. In addition, the process of moving and storing this data carries with it
stringent requirements for data accuracy, data integrity, and reliable database transactions—all
of which are best handled by the ACID characteristic of relational databases.

Database choice decisions for internal data stores in other assessment system components can
be made in a similar manner, driven by the static and dynamic characteristics of the data that
will be processed and stored internally in the component. For example, a key-value or
document-style NoSQL database might be used for the Monitoring and Alerting component
because of the simplicity of the underlying data model.

Data Storage Overview

There are many considerations when sizing and configuring the storage subsystem for the
assessment system. Similarly to server choices, the decision-making in this area will be
determined by the overall type of system deployment. If deployed in a cloud infrastructure or in
a third-party data center, many decisions will be determined by the cloud/hosting vendor
offerings, and the storage specifications will be negotiated and written into the contract.

Important factors to consider are the type of disk drive used (e.g., Serial AT Attachment [SATA],
Small Computer System Interface [SCSI], or serial attached SCSI [SAS]), the use of solid-state
drives (SSDs), storage array types (i.e., storage area network [SAN] vs. direct attached storage
[DAS]), and the RAID (redundant array of independent disks) configuration of the disks.

An important characteristic of any single traditional magnetic disk is the overall disk latency,
which is a combination of these parameters:

 Seek time. The time, in milliseconds, for the head to physically move across the disk to find
the data. This will limit the number of I/O operations per second (IOPS).

PARCC Technology Architecture Page 22

 Rotational latency. The time, in milliseconds, needed to read the data off the disk. This will
limit the I/O throughput, the amount of data a single disk can read per second (MB per
second).

Typical seek times are in the 5 to 10 millisecond range, while typical rotational latency range is
3 to 4 milliseconds (which corresponds to rotational speeds of 15,000 revolutions per minute
[rpm], the current upper limit of most disk drives).

To overcome the limitations of single disk drives, the storage system will have many disks
working together, in some level of RAID in SAN-based or DAS-based storage arrays, to increase
both IOPS and I/O throughput. DAS are typically used via SAS or SCSI interfaces. A SAN is more
expensive because it is a dedicated network that has multiple hard drives (from dozens to
hundreds) with multiple storage processors, caches, and other redundant components. SANs
provide features not available in DAS (e.g., SAN snapshots).

There are two types of SANs: fibre channel (FC) and Internet Small Computer System Interface
(iSCSI). They are different in the underlying wiring mechanism:

 FC SANs. Typically use fiber-optics. FC SANs have better overall performance. Some of them
are configured with tiered-storage, wherein a group of drives in the SAN can be very fast
SSDs, while another group can be relatively slower SATA drives. These groups can be used
for different types of workloads (see “Operational Data Store and Data Warehouse
Workloads” on page 22).

 iSCSI SANs. Use a Transmission Control Protocol/Internet Protocol (TCP/IP) network with
standard Ethernet components. The iSCSI SANs are less expensive, because they use
standard TCP/IP network infrastructure.

Newer solid-state drives (SSDs) have the potential to replace both individual disks and even
SANs when it comes to the ratio of performance to cost, because their seek and rotational
latencies are much lower compared to traditional magnetic disk drives—i.e., there are no
electro-mechanical moving parts. However, SSDs have less predictable failure rates, which can
result in higher supportability cost.

Operational Data Store and Data Warehouse Workloads

There are two primary workload types that a database server commonly deals with:

 Online Transaction Processing (OLTP). The OLTP workload consists of many short
transactions wherein the data is much more volatile than in a Data Warehouse/Reporting
(DW/R) workload. Usually there is much more write activity in an OLTP workload than in a
DW/R workload, and most OLTP systems generate more I/O operations per second (IOPS)
than an equivalent-sized DW/R system.

- Data Warehouse/Reporting (DW/R). A DW/R system usually has longer-running queries
than a similar-sized OLTP system—with much higher read activity than write activity—and
the data is usually more static. In such a system, it is much more important to be able to
process a large amount of data quickly, than it is to support a high number of I/O operations
per second.

PARCC Technology Architecture Page 23

Recommendations for PARCC Assessment System Data Storage

To provide optimal storage performance, the PARCC Assessment System storage
implementation should ideally use a SAN with low overall disk latency. For optimum
performance, the SAN should include either SSDs or fast SCSI disk drives.

The Operational Data Store (ODS) and Data Warehouse (DW) components will use two separate
storage mechanisms (e.g., two SANs), because these two components belong to two different
component groupings (Grouping #1 and Grouping #4) as defined in Component-based
Dependency Matrix in High-level Project Portfolio Schedule.

In evaluating SAN products, it is important to consider the performance characteristics of all
components in the SAN (e.g., processor, disks, switches, and cables) to eliminate the risk that a
lower-bandwidth component will set the upper limit on the overall SAN performance.

Data Archiving

Data archiving is the process of removing selected data, which is not expected to be referenced
again, from an operational database and putting it in an archive data store, where the data can
be accessed again, if needed. The data design, storage methods, and tuning requirements for
an archive data store are different than those for an operational database. While the
operational database is designed and tuned for high levels of create, update, delete, and query
activities executed against high volumes of data, the archive data store needs to accommodate
much higher volumes of data with infrequent query activities and virtually no update activities.

The process of accessing the data in the archive data store is also different than accessing data
in an operational store. Queries against the archive store are typically simple, but produce large
amounts of data. It is also important to design the archive store access mechanism in such a
way that the data would not have to be restored to the original system in order to obtain the
desired output.

It is important to note that the data subject to archival is not only the data hosted in system
databases; the data can also include plain files in various formats, including documents,
multimedia, email, operating system files, and other types.

The PARCC Information Architecture and Data Governance processes will determine what types
of data will be subject to data archiving, when data archiving will occur, how long the data will
be retained in the archive, and when (if ever) the data will need to be destroyed.

The media used for data archival would need to provide access to the archived data, when
needed—though not necessarily at the speed and convenience of operational data access. Cost
will be the driving factor in determining the media for data archival. SAN and DAS are more
expensive than network-attached storage (NAS), and NAS is more expensive than tapes.
However, tapes offer the slowest access speed.

SERVER-SIDE APPLICATION PLATFORMS

In the world of server-side application development, there are two major application
development and deployment platforms: J2EE and .NET. Both application frameworks provide a

PARCC Technology Architecture Page 24

solid foundation for building enterprise-ready, robust, server-side applications. These
frameworks promote the usage of established development best practices and design patterns
(e.g., Model-View-Controller [MVC] for separating presentation, controller, and back-end logic).

Table 3 – Comparison of J2EE and .NET Technologies contains a comparison of the basic
features of these technologies.

Table 3 – Comparison of J2EE and .NET Technologies

Capability J2EE .NET

Open Source Yes No

Language Java C#, Visual Basic .NET (among
others)

Integrated Development
Environment (IDE)

Both open-source and
commercial including
Eclipse, NetBeans, and IntelliJ
IDEA.

Visual Studio .NET

Run-time environment Runs pretty much on any
major operating system.

Windows only*

*There is an open-source
project called Mono which
aims at providing cross-
platform capabilities to .Net.
However, it is only partially
compliant.

Both frameworks enable development and deployment of distributed applications, supporting
Web-tier and business-tier components as well as integration with the enterprise information
system (EIS) tier.

Either technology can be used for development of external or internal PARCC Assessment
System components (see “Component Deployment Options” on page 34), as long as the
implementation of these components satisfies PARCC Assessment System interoperability
requirements. For internal assessment system components deployed as tightly-coupled
components (where a single application server execution environment is used), the J2EE
technology is preferred and recommended because it would provide maximum flexibility in the
deployment options.

Figure 1 – Typical Layout of a J2EE Application System Diagram shows the typical layout in a
J2EE application system.

PARCC Technology Architecture Page 25

Figure 1 – Typical Layout of a J2EE Application System Diagram

In the world of J2EE:

 Client components include application clients and applets.

 Web-tier server-side components include Java Servlets and Java Server Pages.

 Business components include Enterprise JavaBeans (EJBs).

Typical interactions between J2EE components also involve the use of JavaBeans components,
which represent encapsulations of basic data structures with simple data validation rules.

A major requirement for the PARCC Assessment System is for its major functions to be
accessible through a regular Internet browser, so the applicability of application client
technology is limited. However, see “Network Requirements” on page 26 for a discussion of the
trade-offs when using an application client and a browser.

Other Server-side Application Platforms

Besides J2EE and .NET, there are other popular application platforms (e.g., Ruby on Rails) that
should be explored as possible platforms for development and deployment of loosely-coupled
components. There are two basic requirements regarding the use of such platforms:

 The components developed and deployed on these platforms must support interoperability
via Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) Web
services.

PARCC Technology Architecture Page 26

 The components must be built following the model-view-controller (MVC) pattern. The
MVC pattern separates an application’s code into three layers:

- View layer, which is the user interface of the application.

- Model layer, which is the back-end, server-side storage.

- Controller layer, which represents the business logic and serves as the bridge between
the other two layers.

VIRTUALIZATION

Virtualization is the simulation of the software and hardware upon which other software runs.
This simulated environment is called a virtual machine (VM). There are many benefits to using
virtualized servers, the main one being increased operational efficiency, because existing
hardware can do more work by putting a greater load on each computer. In addition to this
benefit, desktop virtualization allows the same computer to run multiple operating systems,
which can aid both development and testing efforts. Most virtualization environments allow
changes to be reverted easily, unlike a physical server environment, in which changes can be
hard to track and revert.

In a typical virtualized environment, one operating system (called the guest OS) and the
applications it contains are run on top of virtual hardware. The guest operating systems on a
host are managed by the hypervisor, which controls the flow of instructions between the guest
operating systems and the physical hardware (i.e., CPU, disk storage, memory, and network
interface cards). Some hypervisors run on top of another operating system, known as the host
operating system.

PARCC Assessment System components must be able to deploy and run on both physical and
virtualized environments. This is to ensure portability of the assessment system component
repository. Using virtualization techniques in the assessment system will improve productivity
and efficiency during the development and validation phases and enable greater flexibility in
the deployment options.

Major commercial products in the virtualization space include VMware VSphere, Citrix Xen
Server, and Microsoft Hyper-V. There are also open-source virtualization products, most
notably Red Hat Enterprise Virtualization. They are all viable options for use in the PARCC
Assessment System and should be explored and compared using comparison Web sites like
www.virtualizationmatrix.com/matrix.php.

NETWORK REQUIREMENTS

Internet connectivity and specific network capacity requirements for the PARCC Assessment
System will be fully defined once the development of the test items repository is complete and
the designs of the assessment delivery platform are finalized. Output data from the Technology
Readiness Tool (www.techreadiness.org) will also be taken into consideration when
determining networking requirements.

http://www.virtualizationmatrix.com/matrix.php
http://www.techreadiness.org/

PARCC Technology Architecture Page 27

Network bandwidth requirements and their functional impact on test administration in the
assessment system are addressed in these specific use cases in High-level Application
Architecture:

 Edge Case – 005: Low-bandwidth District Implementation Edge Case

 Edge Case – 006: High-bandwidth District Implementation Edge Case

Network Capacity Requirements Model

The remainder of this section provides a network bandwidth estimation model to approximate
the network capacity needed to administer a PARCC Assessment System test in a variety of
network environments.

Model Inputs

The model takes several input variables:

 The total number of test items in the test.

 Overall test duration in minutes.

 The number of test items for each of four categories based on a breakdown in two
dimensions as shown in Figure 2 – Relative Network Bandwidth Requirements Diagram.
These two dimensions define the item as traditional or technology-enhanced, and its
content as rich content or low-bandwidth content. For each category, the expected level of
required network bandwidth is shown as well (i.e., low, medium, high, and very high).

 The average size of each item type in bytes.

PARCC Technology Architecture Page 28

Figure 2 – Relative Network Bandwidth Requirements Diagram

Example Network Model 1

The output from the model is the required bandwidth in megabits per second (Mbits/sec) for a
network environment with a different number of simultaneous test takers (i.e., 1, 300; 1,000;
3,000; and 10,000). The number of simultaneous test takers can represent the school, district,
or state level of the test delivery environment. For example, a school level could be
represented by 300 to 3,000 simultaneous test takers.

Step 1: Total Size of a Test

The first step in the model is to arrive at an estimated total size for the test. To determine this,
the model uses the number of test items and the item size for each of the four item categories
described in Figure 2 – Relative Network Bandwidth Requirements Diagram on page 28.

Figure 3 – Example Network Model 1: Estimated Total Size of Test Diagram provides an example
for calculating the total size of a test using representative data.

Traditional Items

Lo
w

-b
an

d
w

id
th

It

e
m

s

VERY
HIGH

HIGH

MEDIUMLOW

Technology-
enhanced Items

R
ic

h
-c

o
n

te
n

t
It

e
m

s

Network bandwidth requirements
per item type

PARCC Technology Architecture Page 29

Figure 3 – Example Network Model 1: Estimated Total Size of Test Diagram

Explanation of Figure 3

The total number of items is 64, broken down in a 32-8-16-8 distribution across the four
content categories (i.e., with a relatively high percentage of technology-enhanced items with
rich content) with the corresponding average item sizes at 2,000; 700,000; 500,000; and
1,200,000 bytes. The resulting total test size is approximately 22 MB.

Step 2: Average Bandwidth Requirement

The second step in the model is to use the total test size and the test duration to determine the
average required bandwidth for one test taker, then multiply the result accordingly to arrive at
the required bandwidth for multiple, simultaneous test takers. Figure 4 – Example Network
Model 1: Estimated Total Bandwidth Diagram shows the results for 1; 300; 1,000; 3,000; and
10,000 simultaneous test takers.

Figure 4 – Example Network Model 1: Estimated Total Bandwidth Diagram

Simultaneous Test Takers

(school/district/state)
1 300 1,000 3,000 10,000

Test duration (min) 150 150 150 150 150

Total Test data (MB) 22 6,656 22,186 66,559 221,863

Required bandwidth (Mbits/sec)

(average)1 0.020 5.916 19.721 59.163 197.211

input field

calculated field 1 Protocol overhead is not reflected in these estimates.

PARCC Technology Architecture Page 30

Explanation of Figure 4

The data columns in this figure display the number of simultaneous students taking a test.
Required bandwidth represents the amount of bandwidth in megabits per second required for
the specified number of simultaneous students to take a test for the specified duration with the
specified amount of total test data.

Example Network Model 2

This example model utilizes a different composition of content types when compared with
Model 1. Figure 5 – Example Network Model 2: Estimated Total Size and Bandwidth Diagram
shows another output from the network bandwidth estimation model, where there is a 40-12-
8-4 composition of the test items across the four content categories.

Figure 5 – Example Network Model 2: Estimated Total Size and Bandwidth Diagram

PARCC Technology Architecture Page 31

Explanation of Figure 5

This diagram represents a test with more traditional item content and less content with
technology-enhanced items (i.e., a relatively low percentage of technology-enhanced items
with rich content). As expected, the required bandwidth is reduced from 59 Mbits/sec to 43
Mbits/sec when compared with the previous scenario depicted in Figure 3 on page 29 and
Figure 4 on page 29.

Model Validity

As with any model, the accuracy of the output is directly dependent on the accuracy of the
inputs and the assumptions made in the model. At this point, there are still many details related
to composition and timing of PARCC Assessment System tests that are yet to be determined. As
more information becomes available, the network bandwidth estimation model should be re-
used to arrive at more accurate estimates.

Conclusions

Using the two sample results presented previously, we can conclude that in these specific
simulation scenarios (i.e., a 150-minute test with 64 items with the specified item breakdowns
and sample item sizes), a typical school environment will require between 4 and 45 Mbits/sec
of bandwidth to accommodate the delivery of a test for 300 to 3,000 simultaneous test takers.

Implications of Network Capacity on the Assessment System

Figure 6 – Example Connection Speeds for Different Connection Types Diagram shows the
typical connection speeds of different connection types and networks.

100-megabit Bandwidth Network

Using the information in this table, we can determine that a 100-megabit Ethernet (i.e.,
100Base-T) LAN, which has typical capacity of 80 Mbits/sec after overhead is deducted, will
probably provide the needed bandwidth to accommodate delivery of this test for 300 to 3,000
simultaneous test takers. However, the same LAN environment would not be able to deliver the
test to 10,000 simultaneous test takers, which requires 197 Mbits/sec in the scenario presented
in “Example Network Model 1” on page 28 and 146 Mbits/sec in the scenario presented in
“Example Network Model 2” on page 30, each one requiring more than the 80 Mbits/sec
provided by the 100Base-T LAN.

10-megabit Bandwidth Network

Similarly, a 10-megabit Ethernet (i.e., 10Base-T) LAN, which provides about 8 Mbits/sec, will be
able to accommodate delivery to 300 simultaneous test takers—but not to 1,000 simultaneous
test takers. This larger number of test takers would require 19 Mbits/sec in the scenario
presented in “Example Network Model 1” on page 28 and 14 Mbits/sec in the scenario
presented in “Example Network Model 2” on page 30.

PARCC Technology Architecture Page 32

Figure 6 – Example Connection Speeds for Different Connection Types Diagram

Key to Figure 6:

Abbreviation Definition

Kbps kilobits per second

Mbps megabits per second

WAN Wide area network

WLAN Wireless local area network

LAN Local area network

Low Bandwidth Capacity Mitigation Strategies

As discussed previously, bandwidth capacity may be a concern with tests containing items using
video, audio, or other more network-intensive media types. Content pre-loading techniques
and HTML5 caching mode should be explored as options to reduce the network requirements
to enable the assessment system to support tests containing such items. However, because of
the diversity of the platforms that are required to be supported (e.g., multiple combinations of
device, operating system, and Web browser) and the corresponding diversity of
implementations of HTML5, certain items with large memory footprints may not be cacheable
across all platforms. For example, the HTML5 Offline Application Cache size limit parameter
may have significantly different values across platform implementations, though the HTML5

Connection type Connection speed Unit Network type

Dedicated PPP/SLIP via modem 28.8 Kbps WAN

Integrated Services Digital Network (ISDN) 128 Kbps WAN

Typical DSL 640 Kbps WAN

ADSL Lite 1.5 Mbps WAN

DS1/T1 1.536 Mbps WAN

10-megabit Ethernet 8 Mbps LAN

Wireless 802.11b 11 Mbps WLAN

ADSL2 12 Mbps WAN

DS3/T3 44 Mbps WAN

OC1 51 Mbps WAN

	Wireless 802.11g 54 Mbps WLAN

100-megabit Ethernet 80 Mbps LAN

OC3 155 Mbps WAN

OC12 622 Mbps WAN

	Wireless 802.1n 600 Mbps WLAN

1-gigabit/sec Ethernet 800 Mbps LAN

PARCC Technology Architecture Page 33

standard does not set an actual limit in the specification. Sometimes such limitations are not
even fully described by the vendors.

The Test Client component can mitigate high-bandwidth items by using pre-loading or caching
techniques. The Test Delivery component will be developed with the ability for test-caching,
which is the deployment of tests within a local environment. Figure 7 – Example Test-caching
Diagram provides an overview of the feature.

Figure 7 – Example Test-caching Diagram

Process Flow Description

1. The student initiates a test by clicking on a link in the Test Client component.

2. The Test Client component contacts a local Test Delivery component.

Note: The term “local” can mean in the same building, school, district, or state.

3. The local Test Delivery component processes all interactions during the test.

4. The local Operational Data Store component records the student responses, ensuring that
the data is persisted.

5. Once the responses are persisted, the local Test Delivery component forwards the
responses to the PARCC Test Delivery component.

6. The PARCC Test Delivery component processes the request as if the student were
connecting directly.

«component»

Test Client

«system»

PARCC Assessment System

«component»

Test Delivery

«system»

State/District/School

«component»

Test Delivery

«component»

Operational
Data Store

PARCC Technology Architecture Page 34

By using an Operational Data Store component for persistence, the local Test Delivery
component can defer the sending of responses if network connectivity is diminished or non-
existent.

2.3 COMPONENT DEPLOYMENT OPTIONS

The internal components of the PARCC Assessment System need to be flexible in their
deployment to provide the diversity of hosting options as defined in Key Technology Priority #5.
While the choices in component deployment will influence the implementation of most use
cases, the biggest impact is expected to be on these use case functional areas (described in
High-level Application Architecture):

 004 – Content Movement

 016 – Resource Center

 006 – Registration

 007 – Scheduling and Assignment

 008 – Student Delivery

 009 – Test Management

 014 – Data Export

Component deployment refers to how the component functionality is packaged and exposed to
other components. Components are usually deployed within some kind of application server
running under a particular operating system on a physical machine.

Depending on their deployment and how they talk to each other, two components can be
tightly-coupled or loosely-coupled.

TIGHTLY-COUPLED COMPONENTS

Tightly-coupled components are usually deployed within the same application server, talk to
each other via local calls, and often share common persistence storage (e.g., a database).

The advantages of tightly-coupled components include:

 Better performance.

 Lower implementation cost.

 Easier security implementation.

The disadvantages of tightly-coupled components include:

 Less flexibility, because components must be implemented in the same technology utilized
by a common application server.

PARCC Technology Architecture Page 35

 Reduced reliability, because tightly-coupled components typically share the same in-
memory server space, in the case of a server failure, all tightly-coupled components in this
memory space will fail.

Figure 8 – Tightly-coupled, Locally Deployed Application Components Diagram illustrates the
notion of tightly-coupled components.

Figure 8 – Tightly-coupled, Locally Deployed Application Components Diagram

LOOSELY-COUPLED COMPONENTS

Loosely-coupled application components are each deployed in a separate application server
running on a separate physical machine. They typically talk to each other via Web service calls.

The advantage of loosely-coupled components is flexibility in technology choices.

The disadvantages of loosely-coupled components include:

 Higher network bandwidth requirements, because loosely-coupled components, typically
deployed in separate application server environments, need an additional network-

«device»

«OS»

«application server»

«application»

Application

«database server»

«protocol»

APIP over
local call

«web server»

«component»
Component A

«component»
Component B

Deployment: Both components are deployed inside the same application server.
Call type: Components directly talk to each other via local calls.
Persistence: Components share a common persistence layer.

PARCC Technology Architecture Page 36

intensive server component (a service bus) to orchestrate their communication through
service calls.

 Reduced performance.

Figure 9 – Loosely-coupled, Remotely Deployed Application Components Diagram illustrates the
notion of loosely-coupled application components.

Figure 9 – Loosely-coupled, Remotely Deployed Application Components Diagram

«component»

Component A

«device»

«OS»

«web server»

«application server»

«application»

Application A

«database server»

«component»

Component B

«device»

«OS»

«web server»

«application server»

«application»

Application B

«database server»

«protocol»

APIP over
REST/SOAP

Web service call

Deployment: Each component is deployed inside its own Device-OS-WS-AS-DB stack.
Call type: Components talk to each other via remote REST/SOAP web service calls.
Persistence: Each component has its own persistence layer.

«protocol»

APIP over
REST/SOAP

Web service call

PARCC Technology Architecture Page 37

OTHER COMPONENT DEPLOYMENT OPTIONS

Other component deployment options exist that can help balance the advantages and
disadvantages of the two component deployments described previously. The particular
deployment type for each PARCC Assessment System component will be determined during
system design and implementation. Figure 10 – Distributed Component Deployment Diagram
shows a more realistic sample deployment and interactions between two example components
(Item Authoring and Item/Test Bank), including possible operating systems, application servers,
and network protocols. This sample deployment illustrates a possible internal architecture for
an Item/Test Bank instance where a clustered application server setup is used to provide for
better availability and scalability.

PARCC Technology Architecture Page 38

Figure 10 – Distributed Component Deployment Diagram

«internal parcc component»

Item/Test Bank

«external component»

Item Authoring

«device»

websrv-01:Acme Model W1234 Server

«OS»

CentOS Linux 6.2

«web server»

Apache HTTP Server 2.2«protocol»

APIP over
REST/SOAP

«plugin»

mod_jk

«plugin»

mod_proxy_
balancer

static content

«device»

appsrv-01:Acme Model A4321 Server

«OS»

CentOS Linux 6.2

«application server»

tom-01:Apache Tomcat 6.0

«protocol»

ajp13:8010

«device»

dbsrv-01:Acme Model DB1432 Server

«OS»

CentOS Linux 6.2

«database system»

db-01:AcmeSQL

«schema»

Item/Test Bank
Schema

«application server»

tom-02:Apache Tomcat 6.0

«application»

Item/Test Bank

«device»

appsrv-02:Acme Model A4321 Server

«OS»

CentOS Linux 6.2

«application server»

tom-03:Apache Tomcat 6.0

«application»

Item/Test Bank

«application server»

tom-04:Apache Tomcat 6.0

«application»

Item/Test Bank

«protocol»

ajp13:8010

«protocol»

ajp13:8009

«protocol»

TCP/IP

«protocol»

TCP/IP

«protocol»

TCP/IP

«protocol»

TCP/IP

«protocol»

ajp13:8009

«device»

«OS»

«web server»

«application server»

«database server»

«schema»

OtherSchema

«application»

Item/Test Bank

PARCC Technology Architecture Page 39

This sample design is still limited by the single database instance which can turn out to be a
bottleneck. In reality, a database cluster (or master-slave setup for decoupled reads and writes)
will be used.

Note: The technologies listed on this diagram are for illustration purposes only. Many other
technologies can be used to achieve the same purpose of ensuring higher component
availability and performance.

Component-based Dependency Matrix in High-level Project Portfolio Schedule includes a
“Component Development Groupings” column that describes the grouping of components
based on related functionality.

 Components that fall into the same functional grouping are good candidates for tightly-
coupled deployments.

 External components (marked as “Not PARCC Developed” in the matrix) will, by definition,
be interacting with internal PARCC components in a loosely-coupled fashion. See Figure 10 –
Distributed Component Deployment Diagram on page 38.

SYSTEM-LEVEL DEPLOYMENT

The PARCC Assessment System can utilize traditional or cloud-based system-level provisioning
and deployment.

Traditional Hosting

Traditional hosting of the PARCC Assessment System will require either the implementation of
the full spectrum of internal IT infrastructure services or outsourcing those services to third-
party hosting providers. Either way, PARCC will typically own or rent the server-side hardware
and software and may need to employ technical staff to manage all or some of the IT
infrastructure. The advantage of this approach is full control over the deployment environment
and IT infrastructure. The disadvantages include: less reliability, inability to change capacity
quickly as the load on the system changes, and slower deployments.

Cloud-based Deployment

According to the National Institute of Standards and Technology (NIST), cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction.

The five essential characteristics of a cloud infrastructure are:

 On-demand self-service

 Broad network access

 Resource pooling

 Rapid elasticity

 Measured service

PARCC Technology Architecture Page 40

There are many advantages of provisioning the PARCC Assessment System in the cloud, as
opposed to using traditional hosting options. Capacity planning, disaster recovery, availability,
and reliability are system features that a reputable cloud provider will list as part of the cloud
service contract. Costs can also be better allocated and managed, because typically service is
paid for only when it is actually used.

Depending on who uses the cloud infrastructure, who manages the infrastructure, and where it
is located, system deployments can be private, public, or community. Figure 11 – Deployment
Models in a Cloud Infrastructure Diagram summarizes the features of each deployment model.

Figure 11 – Deployment Models in a Cloud Infrastructure Diagram

These are the most common models for deploying cloud infrastructure:

 Software-as-a-service (SaaS)

 Platform-as-a-service (PaaS)

 Infrastructure-as-a-service (IaaS)

These models are based on the types of resources (e.g., servers, network, storage, operating
system, and application development platforms) that the customer of a cloud infrastructure can
manage and control. Figure 12 – Service Models in a Cloud Infrastructure Diagram summarizes
the service models.

Deployment models in a cloud infrastructure:

Used by: Exclusive use? Owned/Managed by: Located at premises of:

Private
A single organization

and its units
Yes User and/or third-party User and/or cloud provider

Public The general public No
Business/academic/gov

organizations
Cloud provider

Community
Several organizations with

shared concerns/mission
Yes

One or more

of the organizations

and/or third-party

User and/or cloud provider

Cloud infrastucture is:

PARCC Technology Architecture Page 41

Figure 12 – Service Models in a Cloud Infrastructure Diagram

Based on these definitions of deployment models and service models:

 The best option for deploying some (or all) of the PARCC Assessment System components is
a community deployment model or some combination of Community and Public (also
known as Hybrid).

 The best service model is either PaaS or IaaS, depending on the level of control PARCC
would like to have over the network provisioning and the application development
technologies that the cloud provider is making available to PARCC.

The SaaS service model is not suitable because PARCC needs greater control and management
over the deployed applications. The PaaS model with some cloud providers may be restrictive,
if the provider-supplied application development technologies do not match the technologies
chosen for internal PARCC development. One other concern of the cloud-based deployment
model is the security of the student data. Regulatory and standards compliance in this area
must be validated before any cloud-based component deployments are initiated. For a
discussion of security in cloud deployments in more detail, see “Data Security” on page 62.

2.4 SYSTEM MANAGEMENT AND MONITORING

System management and monitoring will be an essential part of the technical administration of
the PARCC Assessment System. It will also play an important role in maintaining a secure
environment and enforcing policies (e.g., authorization, privacy, and auditing) and standards
compliance.

A system management and monitoring framework typically involves setting up monitoring
agents on all monitored system entities (e.g., devices, machines), and a central management
server that collects and processes the events generated by the monitoring agents.
Management event information in the PARCC Assessment System will be published via
standard protocols (i.e., JMX or SNMP) to a central management and monitoring server. This
server will also perform health monitoring that involves collecting data representing the overall

PARCC Technology Architecture Page 42

technical health conditions of the system and its components. This data will provide fine-
grained, detailed depictions of the health of services, components, and the PARCC technical
infrastructure as a whole. Any alerts from the health monitoring will be propagated to support
personnel for analysis and action.

SIMPLE NETWORK MANAGEMENT PROTOCOL—SNMP

SNMP is the system management and monitoring protocol most often used today. Most
professional-grade hardware devices today come with a built-in SNMP agent ready to be
integrated as a network element (NE) in a network management system (NMS). NMS and all
NEs in it communicate among each other, exchanging GET, SET, or TRAP messages. An NE can
send a TRAP message to the NMS to announce, for example, a particular kind of failure in the
device. The NMS can use GET messages to retrieve data from NEs (e.g., the NMS can
periodically query an NE for the value of a certain parameter (e.g., consumed bandwidth), and
then the NMS can build charts and graphs from that data, warn system personnel of overload
conditions, etc. The TRAP and GET messages provide the monitoring part of the NMS services.
The NMS can also issue a SET message to an NE to change certain parameters on the device
(e.g., change routes on a router). The SET message provides the management part of the NMS
services.

Figure 13 – Example Network Management System with SNMP Diagram illustrates the concepts
of NMS, NEs, and SNMP.

Figure 13 – Example Network Management System with SNMP Diagram

File
Server

FTP
Server

NMS

Application
Server

Database
Server

Web
Server

Email
Server

Router

Switch

Printer

SNMP

SNMP

SNMP

SNMP

SNMP

SNMP

SNMP

SNMP

SNMP

PARCC Technology Architecture Page 43

The SNMP MIB (Management Information Base) is a collection of variables that are shared
between the NMS and the NEs. Hardware and software vendors can extend the MIB by adding
new variables to it.

The SNMP protocol is available in several versions. Most hardware and software vendors
support SNMPv1 and SNMPv2c. A few support SNMPv3, which supports user-based security.

JAVA MANAGEMENT EXTENSIONS – JMX

JMX is a Java technology for monitoring and managing the performance of the Java Virtual
Machine (JVM) at run-time. It is applicable for Java and J2EE-based applications. The JMX has
out-of-the-box management tools to monitor and control standard JVM parameters like heap
size, CPU utilization, etc.

In addition, JMX technology can also be used for managing custom MBeans at run-time without
the need to restart the JVM. A custom MBean is a Java component that can expose certain
parameters of a J2EE application so that these parameters can be dynamically managed at run-
time. In this way, JMX provides custom management and monitoring capabilities for Java-based
applications which augment the capabilities of standard SNMP-based management and
monitoring solutions.

COMMON EVENT EXPRESSION – CEE

CEE is a framework that enables collaboration in the creation of open, practical, and industry-
accepted event interoperability standards for electronic systems. It is developed by MITRE
(www.mitre.org) and can be used as a standard for generating, communicating, and consuming
log messages across all hardware and software components in the PARCC Assessment System.
CEE simplifies the task of establishing and maintaining compliance with various regulatory
standards that incorporate audit or security guidelines.

The CEE framework has four sub-elements: log transport, log syntax, expression taxonomy, and
logging. These can be thought of as four layers that take different shapes depending on the
target area where CEE logging is used. Figure 14 – CEE Application in SNMP and XML SOAP
Logging Diagram brings together two monitoring concepts: low-level SNMP-based monitoring
(discussed previously) and high-level XML SOAP logging.

http://www.mitre.org/

PARCC Technology Architecture Page 44

Figure 14 – CEE Application in SNMP and XML SOAP Logging Diagram

COMMERCIAL MONITORING AND MANAGEMENT TOOLS

This section provides short descriptions of available commercial monitoring and management
tools that illustrate the range of capabilities of the tools.

IBM Tivoli (www-01.ibm.com/software/tivoli/)

The IBM Tivoli Monitoring (ITM) software is a comprehensive monitoring and management
solution that can optimize IT infrastructure performance and availability. It can be used to
manage operating systems, databases, and servers in distributed and host environments.

Core Features

The following are the basic features of IBM Tivoli Monitoring software:

 Provides a common, flexible, and easy-to-use browser interface and customizable
workspaces to facilitate system monitoring.

 Detects and recovers potential problems in essential system resources automatically.

 Offers lightweight and scalable architecture, with support for IBM AIX, Sun Microsystems
Solaris, Microsoft Windows, Linux, and IBM System z monitoring software.

 Includes easy-to-use warehouse and advanced reporting capability.

 Helps to ensure that IT resources and staff are operating efficiently and effectively when
combined with composite application, event, network, and service-level management
solutions from IBM Tivoli.

 Lowers total cost of ownership with new features that automate the maintenance and
support of ITM-based agents.

 Operating systems supported: IBM AIX, Hewlett-Packard HP-UX, Apple iOS family, Sun
Microsystems Solaris, Microsoft Windows family.

http://www-01.ibm.com/software/tivoli/

PARCC Technology Architecture Page 45

Figure 15 – Base Architecture of IBM Tivoli Monitoring Software Diagram illustrates the base
architecture of IBM Tivoli monitoring software.

Figure 15 – Base Architecture of IBM Tivoli Monitoring Software Diagram

Zyrion Traverse (www.zyrion.com)

Zyrion Traverse is a scalable network and systems monitoring software product that presents
correlated views of networks, servers, and applications. In addition to systems and network
management, Zyrion Traverse also provides application monitoring of databases, Web
applications, Java applications, and mail servers (e.g., Exchange and Blackberry Enterprise
Server).

Core Features

 Monitoring features include: Bandwidth monitor, Linux Server monitoring, Windows
monitoring, Cisco router monitoring, Oracle, MySQL, SQL Server monitor, Exchange, and
Active Directory.

 Reporting features include: SLA, real-time event logs, traps, syslogs, capacity planning,
performance, and trend analysis.

 Free trial is available.

NimBUS (www.nimsoft.com)

NimBUS is a service-level monitoring solution (completely developed in-house) that provides
scalable, resilient, and reliable monitoring capabilities for organizations that wish to proactively
manage critical IT resources against service-level agreements. These resources include, but are
not limited to, servers, hosts, applications, databases, network services, and network devices.

http://www.zyrion.com/
http://www.nimsoft.com/

PARCC Technology Architecture Page 46

Core Features

 Real-time performance monitoring and reporting of potential problems.

 SLA definition, monitoring, and reporting.

 Customizable business service and operations dashboards.

 End-to-end response time measurement with end-user service levels.

For data collection and automation, NimBUS offers a comprehensive suite of infrastructure
monitoring robots and probes. NimBUS probes will enable full coverage of heterogeneous IT
infrastructures. Monitoring probes include support for networks, databases, servers,
middleware, email, applications, Web-based services, directory services, and much more.
NimBUS’s open APIs, flexible architecture, and out-of-the-box third-party integrations and
gateways, ensure that adaptation to other management tools and service-level monitoring
processes is easily achieved. With NimBUS, all service-level monitoring functions are inherent;
they are written collectively as a single architecture and single code base. The result is easy
installation, deployment, configuration, administration, and usability. With NimBUS there is no
requirement for strenuous installation integrations and ongoing administration efforts.

OPEN-SOURCE MONITORING AND MANAGEMENT TOOLS

This section provides short descriptions of available open-source monitoring and management
tools that illustrate the range of capabilities of the tools.

Nagios (www.nagios.org)

Wikipedia describes Nagios as “a very popular open-source system monitor, network
monitoring, and infrastructure monitoring software application. Nagios offers complete
monitoring and alerting for servers, switches, applications, and services.”

Core Features

 Monitoring network services like SMTP, POP3, HTTP, NNTP, ICMP, SNMP, FTP, SSH.

 Monitoring host resources (i.e., processor load, disk usage, system logs).

 Custom probes via plugins.

 Remote monitoring through SSH or SSL encrypted tunnels.

 Parallelized service checks.

 Alerting.

 Redundant monitoring hosts.

 Optional Web interface.

Wikipedia contributors, “Nagios,” Wikipedia, The Free Encyclopedia,
en.wikipedia.org/w/index.php?title=Nagios&oldid=498419117 (accessed June 22, 2012).

http://www.nagios.org/
http://en.wikipedia.org/w/index.php?title=Nagios&oldid=498419117

PARCC Technology Architecture Page 47

Zenoss (www.zenoss.com)

Wikipedia describes Zenoss as “an open-source application, server and network management
platform based on the Zope application server. Zenoss provides a Web interface that allows
system administrators to monitor availability, inventory/configuration, performance, and
events.”

Core Features

 Monitoring availability of network devices using SNMP, SSH, WMI.

 Monitoring network services like HTTP, POP3, NNTP, SNMP, and FTP.

 Monitoring host resources (i.e., CPU, memory, disk usage).

 Time-series performance monitoring of devices.

 Event management tools.

 Automatic network resource discovery.

 Alerting system.

 Nagios plugin format support.

Wikipedia contributors, “Zenoss,” Wikipedia, The Free Encyclopedia,
en.wikipedia.org/w/index.php?title=Zenoss&oldid=491333036 (accessed June 22, 2012).

Zabbix (www.zabbix.com)

Wikipedia describes Zabbix as “a network management system designed to monitor and track
the status of various network services, servers, and other network hardware. Zabbix offers
several monitoring options. Simple checks can verify the availability and responsiveness of
standards services such as SMTP or HTTP without installing any software on the monitored
host.”

Core Features

 Monitoring host statistics like CPU load, network utilization, disk space, etc.

 Monitoring SNMP, TCP, ICMP over IPMI, JMX, SSH, telnet.

 Supports a variety of real-time notification mechanisms including XMPP.

Wikipedia contributors, “Zabbix,” Wikipedia, The Free Encyclopedia,
en.wikipedia.org/w/index.php?title=Zabbix&oldid=498532690 (accessed June 22, 2012).

MIDDLEWARE AND INTEGRATION SOFTWARE

The middleware layer in the PARCC Assessment System Architecture will be built using service-
oriented architecture (SOA) principles and designs. A layered service approach will be used to
package component functionality and expose it as services to be used by other components
and services. The exposed services will be stateless, coarse-grained, and loosely-coupled.

http://www.zenoss.com/
http://en.wikipedia.org/w/index.php?title=Zenoss&oldid=491333036
http://www.zabbix.com/
http://en.wikipedia.org/w/index.php?title=Zabbix&oldid=498532690

PARCC Technology Architecture Page 48

The recommended layered-service mechanism (also known as an SOA stack) is based on the
Open Group Standard’s “SOA Reference Architecture Technical Standard”
(www.opengroup.org/soa/source-book/soa_refarch/index.htm) and will consist of three layers:

 Service Component Layer

 Services Layer

 Business Process Layer

The basic layer is the service component layer. Figure 16 – Service Component as a Façade
Diagram shows a service component internally implemented.

Figure 16 – Service Component as a Façade Diagram

Application
B

WS
Client

Service A

Service
Component

A

XML via HTTP
(SOAP/REST)

Package
X

Package
Y

This figure shows a service component internally implemented by using the functionality of
packages X and Y, and at the same time, exposed as a service, A, consumed by application B,
which serves as a Web-service client.

 The consumer (application B) can be another PARCC Assessment System component
(internal or external).

 Application B is coupled only to the description of service A (i.e., it is not dependent or
impacted by any of service A’s implementation details).

 Service component A acts as a service implementation facade hiding the actual physical
implementation performed by Package X and Package Y.

 Packages X and Y, in turn, can be either internal or external components exposing their
services in a similar way, or they can be low-level standalone packages (e.g., Java packages).

Note: Those packages might be replaced with different implementations in the future, but this
implementation detail would be transparent to application B, because it would still see
the advertised description of service A that would not be changed by the internal
refactoring.

The Service Component layer will be the core implementation layer of the PARCC Assessment
System middleware, providing the backbone of the SOA stack.

The next layer up the SOA stack is the Services Layer. Its purpose is to take enterprise
components and externalize a subset of their interfaces, which are then made available to

http://www.opengroup.org/soa/source-book/soa_refarch/index.htm

PARCC Technology Architecture Page 49

outside consumers. The services layer contains all the services exposed by the underlying
service component layer. The specification of each service includes a description of the
functionality of the service, which contains (but is not limited to) a formal WSDL (Web Service
Definition Language) file. In addition to this, the service specification could often include an
informal policy document, SOA governance descriptions, and other documents that show
service dependencies or classifications.

The services in the Services Layer will be accessed using different transports and will provide
the fabric of the PARCC Assessment System middleware. The response of each service call can
be further transformed into a suitable format (e.g., HTML or XML) and transported to other
layers in the assessment system using an Enterprise Service Bus (ESB) or other similar
technologies.

The services in the Services Layer can be atomic or composite.

 Atomic Services. Use only service components from the Service Component Layer to
implement their advertised functionality.

 Composite Services. Can use service components from the Service Component Layer, as
well as other services from the Services Layer.

The last layer in the PARCC Assessment System middleware stack is the Business Process Layer.
This layer provides orchestration by assembling one or more services from the Services Layer to
implement a particular business process. Figure 17 – Business Process Orchestration in the
Business Process Layer Diagram illustrates this concept.

Figure 17 – Business Process Orchestration in the Business Process Layer Diagram

PROCESS P

Service A

Component A

Package
X

Service B

Component B

Application
M

Service C

Component C

Package
N

Service D

Component D

Application
D

The business process layer is a set of sequencing processes that organizes the flow of multiple
service calls using the services available in the Services Layer as building blocks. Business logic,
expressed in Business Process Execution Language (BPEL), will be used to organize those service
flows, as parallel or sequential tasks, based on business rules, business policies, and business
requirements. Business Process Model and Notation (BPMN) can also be used to depict the

PARCC Technology Architecture Page 50

high-level PARCC business processes. BPMN is a graphical notation used to visualize the end-to-
end flow of a business process. The primary goal of BPMN is to provide a business process
modeling notation understandable by all business users. Since BPEL is currently considered the
most important standard for business process execution languages, a translation to BPEL is
specified in the BPMN standard.

WEB SERVICES (SOAP/REST)

Web services represent an increasingly popular technique for developing, deploying, and
consuming services in an SOA infrastructure, enabling location transparency by utilizing
registries such as UDDI for runtime discovery. The typical protocol for Web services is
HTTP/HTTPS. Clients can locate the desired service dynamically by requesting the service from
the registry. The Web services architecture provides benefits of loose-coupling by providing a
mechanism to find, bind, and invoke the service dynamically.

Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) are two types
of Web services. They have different architectural properties and usage scenarios which are
described below.

REST is not a protocol or a standard but rather an architectural style, as first defined in 2000 by
Roy Fielding in his dissertation Architectural Styles and the Design of Network-based Software
Architectures. Web services created in the REST architectural style:

 Use the HTTP protocol as the underlying protocol.

 Utilize built-in HTTP features like caching and stateless conversations.

 Expose server-side resources through URI (Universal Resource Identifiers).

 Make use of the standard HTTP operations (e.g. GET, PUT, DELETE, POST, HEAD) for
manipulating the server-side resources through their representations.

SOAP is a detailed specification for implementing Web services that:

 Uses many protocols, not just HTTP.

 Relies on XML for its message format.

 Defines method calls and input/output message structures through Web Service Definition
Language (WSDL).

 Utilizes service discovery through Universal Description Discovery and Integration (UDDI).

 SOAP is extensible, allowing for accommodation of additional features (e.g., support for
Web service security is possible through WS-Security).

PARCC Technology Architecture Page 51

Table 4 -- Comparison of SOAP and REST summarizes the pros and cons of REST and SOAP.

Table 4 -- Comparison of SOAP and REST

 REST SOAP

Pros  Simpler to understand, learning curve is
not steep.

 Easier for development and testing.

 Uses existing Web infrastructure (e.g.,
caching, which aids scalability and
performance).

 Can use any transport (e.g.,
SMTP or JMS), not just
HTTP/HTTPS.

 Industry standard with well-
defined protocol.

 Supports security and
transactions, allowing for more
flexibility during API design.

Cons  Uses only HTTP/HTTPS transport.

 Lacks definitive standards.

 Considered architectural approach, not a
protocol.

 Support for security (beyond SSL) and
transactions needs to be custom-built.

 High startup costs due to
complexity of standards, learning
of development tools, and
vendor differences.

 The additional flexibility comes at
the cost of additional complexity.

Based on the summary of pros and cons listed above, ASG and Pacific Metrics can make these
recommendations:

 SOAP is recommended for communication between components where security or
transactional/reliable messaging is needed and the cost of providing an equivalent custom
REST-based solution is deemed too high.

 REST is recommended for create-read-update-delete operations between internal PARCC
components or between components in a single component grouping.

 REST is recommended for components hosted on the same local area network (LAN) or
internal network.

MIDDLEWARE AND INTEGRATION SOFTWARE VENDOR CAPABILITIES AND OFFERINGS

This section provides a summary of middleware and integration software products showing
their capabilities.

IBM, Red Hat, Oracle, and Microsoft are major vendors providing middleware software.
Vendors such as Axway, SAP, TIBCO, Informatica, Pervasive, and webMethods were specifically
founded to provide Web-oriented middleware tools. Groups such as the Apache Software
Foundation, OASIS, OMG, OpenSAF, and the ObjectWeb Consortium (now OW2) encourage the
development of open-source middleware and also push for standards-based development of
commercial software.

PARCC Technology Architecture Page 52

Oracle Fusion Middleware (www.oracle.com)

Oracle Fusion Middleware (OFM, also known as Fusion Middleware) consists of several
software products from Oracle Corporation. OFM spans multiple services, including Java EE and
developer tools, integration services, business intelligence, collaboration, and content
management. OFM depends on open standards such as BPEL, SOAP, XML, and JMS.

TIBCO ActiveMatrix (www.tibco.com)

TIBCO ActiveMatrix is a technology-neutral platform designed to simplify the development,
deployment, and management of composite business process management (BPM) and service-
oriented architecture (SOA) applications. The ActiveMatrix family includes products for service
creation and integration, distributed service and data grids, packaged applications, BPM and
governance.

OpenSAF (opensaf.org)

OpenSAF is an open-source project for developing middleware that is based on industry-
standard, open interfaces for applications requiring uninterrupted 24/7 availability. OpenSAF is
actively supported by leading companies in the communications and enterprise computing
industries.

2.5 SECURITY REQUIREMENTS FOR APPLICATIONS AND END-USER ACCESS

The PARCC Assessment System must enforce stringent security checks and rules involving the
operation of its applications, the storage and transfer of its data, and the controlling of end-
user access. Most of the decisions in this area will directly impact the implementation of use
cases in these functional areas (described in High-level Application Architecture):

 006 – Registration

 007 – Scheduling and Assignment

 008 – Student Delivery

The assessment system security implementation must satisfy these basic principles of
information security:

- Confidentiality. Ensures that the system data and functions are protected from
unauthorized access.

- Integrity. Guarantees that system data has not been modified or interfered with by a third
party (whether malicious or not).

- Authentication. Ensures that the identity of a user or a remote system accessing the system
is valid and correct and has not been impersonated or compromised in any way.

- Authorization. Ensures that that a valid, authenticated user or remote system has the
appropriate rights to access system data or execute system functions.

http://www.oracle.com/
http://www.tibco.com/
http://opensaf.org/link/linkshow.asp?link_id=151213

PARCC Technology Architecture Page 53

- Non-Repudiation. Guarantees that all actions, once performed, cannot be denied by the
user or the system itself.

Comprehensive security controls as defined by ISO/IEC 27001 and NIST Special Publication SP
800-53 revision 3 must be put in place to ensure that the assessment system is properly
secured. The security controls are techniques to avoid or minimize security threats and risks.
Examples of such security threats are network sniffing, man-in-the-middle attacks, session hi-
jacking, password cracking, cross-site scripting attacks, and SQL injection.

END-USER AUTHENTICATION/AUTHORIZATION AND ACCESS CONTROL

All PARCC Assessment System end users will be authenticated to the system using a single sign-
on process. Single Sign-on (SSO) is the ability for users to access multiple software applications
from multiple sources and vendors by logging in just once with a single username and
password—preferably from any location. Security Assertion Markup Language (SAML) is an XML
standard that allows secure Web domains to exchange user authentication and authorization
data. The SAML protocols for single sign-on will be used. Open-source frameworks for single
sign-on (e.g., OAuth, OpenID, and Shibboleth) should be explored as implementation options
for the Identity Management component of the assessment system.

Once authenticated, the users will be authorized to perform specific functions across PARCC
subsystems based on their assigned role. Each role defines what the user can access and the
level of this access. Such end-user access control policy is known as RBAC (role-based access
control).

Security attributes can also be used to describe the basic properties of all assessment system
internal system entities with regard to the security and safe-guarding of information. Examples
of such entities are PARCC student records, test results records, and test report files. The
security attributes will then be used to enable access control and flow control policies in the
system. End users will be given a set of roles, each defining what resources with what security
attributes the end user can access.

The security services of the assessment system must provide for comprehensive account
management, access enforcement, and system use notifications (e.g., previous logon/access
notifications).

One option to provide a more secure user authentication is the two-factor authentication
scheme. It requires that the user present to the system at least two of the three well-known
authentication factors:

• Something the user knows.

• Something the user has.

• Something the user is.

While two-factor authentication schemes are more secure, they also have an impact on
usability, so this trade-off needs to be further examined before a decision is made.

PARCC Technology Architecture Page 54

REGULATORY COMPLIANCE

An important aspect of PARCC Assessment System security will be regulatory compliance. There
are two federal acts that relate to the security implementation of the assessment system,
namely FERPA and COPPA.

 FERPA – Family Educational Rights and Privacy Act. FERPA is a U.S. federal law that
protects the privacy of student education records. The law applies to all schools that receive
funds from the U.S. Department of Education and will, therefore, apply in full force to the
PARCC Assessment System. The law protects student privacy by prohibiting the disclosure of
personally identifiable information from education records without prior written consent.
FERPA was written specifically for students and guarantees them the right to inspect and
review their education records, the right to seek to amend education records, and the right
to have some control over the disclosure of information from those education records.
FERPA was amended in 2008 to clarify many rules surrounding data sharing.

 COPPA – Children’s Online Privacy Protection Act. COPPA places parents in control over
what information is collected from their young children online. COPPA applies to operators
of commercial Web sites and online services directed to children less than 13 years of age
that collect, use, or disclose personal information from children.

The PARCC Assessment System security implementation must consider these laws and address
relevant sections accordingly.

TEST DELIVERY COMPONENT SECURITY CONCERNS

The Test Delivery component has specific security concerns that should be addressed. To
prevent fraud and ensure the validity of the test, special requirements must be considered
regarding the test environment. In order to provide a secure test environment using a Web
browser as the test client, the desktop and operating system environment, where the browser
is running, must be locked-down, so that students taking the test can access and control only
one window on the screen (i.e., the one with the test). For example, students should be
prevented from switching to another task/application, minimizing the test window, typing a
URL in the browser, opening another browser tab in the browser window, going back to the
previous page, exiting the test prematurely, etc. Also, the machines on which a test is taken
should be prevented from connecting to any other servers on the network except the
assessment system servers. This means special network firewall rules must be in place to
ensure connectivity only to the designated servers.

There is a trade-off between the ability to satisfy all those security concerns in their entirety,
and the implementation of the Test Client delivering the test.

Web-based Test Client Implementation

Standard Internet browsers (including popular browsers such as Internet Explorer, Firefox,
Chrome, Safari, and Opera) can all be used to implement a Web-based test client. In such an
environment, most of the actual work, including data processing and data persistence, is done
on the server computer (i.e., on the other end of the connection and not in the Web-based test

PARCC Technology Architecture Page 55

client environment). The test client is limited to providing only the user interface part of the
testing functionality (i.e., input data capture and data output).

Note: All browsers have been designed with great end-user UI flexibility and convenience—
but they all have very limited features for tightening the security of the end-user
experience.

Native Application Test Client Implementation

On the other hand, the test client can be implemented as a native application written
specifically for the target operating system (e.g., Windows or Linux). The native application
typically has its own data processing and data persistence capabilities and can provide much
greater control over the security of the desktop environment, where the test will be delivered.
However, there is a significant cost in terms of development, deployment, and configuration
efforts when using a native application for delivering the PARCC Assessment System tests.

There is also an intermediate option wherein the regular browser is used for test delivery, but
additional software must also be installed on each client machine—along with a corresponding
server component in the PARCC infrastructure—to guarantee the requirements of a secure
testing environment. This option does incur some additional development, deployment, and
configuration costs, but not as much as in the pure “native application” option.

In this option, the Internet browser continues to be the primary vehicle for test delivery in the
assessment system. This will be the recommended option for secure test delivery. The
additional client software that will ensure a secure desktop testing environment can be
commercial off-the-shelf (COTS), procured, or developed as part of the assessment system
development effort.

2.6 INTEGRATION WITH EXISTING TECHNICAL ENVIRONMENTS

The PARCC Assessment System will need to integrate with existing technical environments at
the state, district, and school levels. Depending on the deployment model for some or all of the
assessment system components, certain components can be deployed at the state, district, or
school levels for increased performance (e.g., network bandwidth) or other considerations.
External and/or existing components (e.g., state SIS or item/test authoring systems) are always
going to be deployed as per the specifications by the particular vendor that produces the
component—which may or may not be at the PARCC deployment level. Regardless of the
component deployment level, interoperability among components will not be affected and will
be executed according to the overall component interaction architecture.

Figure 18 – Assessment System Component Deployment at Various Levels Diagram illustrates a
typical PARCC Assessment System deployment, wherein some components are deployed at
PARCC level, some are deployed at the state level, and some are deployed at the district and
school levels.

PARCC Technology Architecture Page 56

Figure 18 – Assessment System Component Deployment at Various Levels Diagram

Deploying components at a non-PARCC level will require that these components be developed
to expose their functionality via both local and service-oriented interfaces to ensure that the
component will function and interoperate correctly in both PARCC-level and non-PARCC-level
deployments.

The details of a particular component deployment at a non-PARCC level will be determined by
PARCC, the component developer, and the specifics of the technical infrastructure at the non-
PARCC level (e.g., state, district, or school). For example, in some cases, this non-PARCC
deployment can be implemented with virtualization techniques utilizing existing
state/district/school hardware. In other cases, the component may be deployed on new
physical hardware.

Figure 19 – Interactions between Components Deployed at Different Levels Diagram shows
versions of the same Test Delivery component (deployed at different levels) that will interact
with each other to deliver data in and out of the PARCC-level component.

SHARED SERVICES

Item/Test Bank

ITB

Test
Registration

TR

Test
Delivery

TD

Operational
Data Store

ODS

Portal

P

Identity
Management

IM

Item Response
Scoring

IRS

Automated
Scoring

AS

Monitoring
& Alerting

MA

Data
Warehouse

DW

Test Analysis

TAn

Item
Authoring

IA

APIP

APIP

Reporting
& Analytics

RA

APIP/PNP

Human
Scoring

HS

APIP

Student Information
System

SIS

SIF

CMIS

APIP/CP

CEDS/APIP

APIP

State
Deployment

Direction of arrow
indicates calling
dependency. Arrow
points to the
component being
called.

PARCC
Deployment

APIP

Test Spec
Authoring

TSA

Test Packager
TP

Test Client

TC

Deterministic
Scoring

DS

Test Scoring

TS

APIP

HTML5
APIP

Test
Authoring

TAu

APIP

Paper
Scanning

PS

State Data
Warehouse

SDW

State
Reporting

SR

Identifier
Service

IS

District
Deployment

School
Deployment

Resource Center

RC

APIP

PARCC Technology Architecture Page 57

Figure 19 – Interactions between Components Deployed at Different Levels Diagram

2.7 DEVELOPMENT AND TESTING PROCESSES AND ENVIRONMENTS

While not required, it would be beneficial to PARCC if each vendor engaged in developing
PARCC components followed development and testing processes based on established
frameworks, tools, and methodologies. A typical development environment will utilize:

 An integrated development environment (IDE) for code development.

 A version control system for code versioning.

 A build tool for code building.

 A continuous integration tool for automatic builds based on changes in the version control
system.

 A unit-testing framework for testing unit-level functionality.

 A test automation tool for automated system testing, possibly integrated with the
continuous integration tool.

 A performance testing tool for testing the performance of the system.

Test
Delivery

TD
Test

Delivery

TD
Test

Delivery

TD

SHARED SERVICES

Item/Test Bank

ITB

Test
Registration

TR

Test
Delivery

TD

Operational
Data Store

ODS

Portal

P

Identity
Management

IM

Item Response
Scoring

IRS

Automated
Scoring

AS

Monitoring
& Alerting

MA

Test Analysis

TAn

Item
Authoring

IA

APIP

APIP

APIP/PNP

Human
Scoring

HS

APIP

Student Information
System

SIS

SIF

CMIS

APIP/CP

CEDS/APIP

APIP

APIP

Test Spec
Authoring

TSA

Test Packager
TP

Test Client

TC

Deterministic
Scoring

DS

Test Scoring

TS

APIP

HTML5
APIP

Test
Authoring

TAu

APIP

Paper
Scanning

PS

Identifier
Service

IS

School
District

State

PARCC

Resource Center

RC

APIP

PARCC Technology Architecture Page 58

There is a multitude of tools, both commercial and open-source, that can be used for PARCC
Assessment System development. Each vendor will decide what is the best development
toolset and environment to utilize to develop and test the assessment system components.

Development, testing (both functional and performance), and release to production are all
activities which happen in their corresponding environments. Environment, in this context,
means a set of all necessary server-side hardware and software (physical or virtualized) that
ensures the operation of the assessment system as it moves through development, testing,
integration, and production.

Figure 20 – Recommended Assessment System Development Environment Layout Diagram
shows a recommended layout for the PARCC Assessment System development environment.

Figure 20 – Recommended Assessment System Development Environment Layout Diagram

Continuous Integration Server
(CruiseControl, Jenkins)

Developer
Workstation
(Eclipse IDE)

Source Code Repository Server
(Subversion)

Development Web Server
(Apache)

Development
Application Server

(J2EE, .Net)

Developer
Workstation
(Eclipse IDE)

Developer
Workstation
(Eclipse IDE)

DEVELOPMENT NETWORK

Check-in code

Automatic
Builds

Deploy

Defect
Tracking Server
(Jira, Bugzilla)

Pull/Resolve/Update
Defects

Developer
Workstation
(Eclipse IDE)

Email Notifications
Build Success/Failure

The development network hosts developer workstations with IDE installations, where
developers create and change the assessment system programming code as well as execute
unit testing.

 Developers check in their code changes into a Source Code Repository Server.

 Upon check-in, code changes are pushed to a Continuous Integration Build Server, where an
automatic build occurs and the code is then deployed to the Development Application
Server.

PARCC Technology Architecture Page 59

 Developers also pull defects from the Defect Tracking Server, work on them by changing the
code, and then update the defects’ status and description back to the Defect Tracking
Server.

Figure 21 – Recommended Assessment System Testing Environment Layout Diagram shows a
recommended layout for a testing (validation) environment for the assessment system.

Figure 21 – Recommended Assessment System Testing Environment Layout Diagram

Continuous Integration
Build Server

Source Code Repository Server

Testing Web Server

Testing
Application Server

TESTING NETWORK

Nightly
Builds

Deploy

Testing Load BalancerPARCC
Assessment System

Test System

Manual Testing Workstation

Automated Functional
Testing Server

Run
Automated

Functional Tests

Defect
Tracking Server

Run manual tests
Pull/Update defects

Automated Tests
Development Workstation

Publish
Automated Tests

Automated Performance
Testing Server

Run
Automated

Performance
Tests

The test environment includes a testing load balancer, testing Web server, and testing
application server, wherein the application is deployed after nightly automatic builds that are
executed by the Continuous Integration Build Server pulling the source code from the Source
Code Repository Server. Both manual and automated testing will be executed to validate the
functionality of the PARCC Assessment System.

 Automated tests are developed on Automated Tests Development workstations and
published to the Automated Testing Server, where they are executed against the
assessment system Test System.

 As defects are encountered during both manual and automated testing, they are entered
into the Defect Tracking Server for subsequent resolution by the development team.

The layout also includes an Automated Performance Testing Server for executing automated
performance tests.

PARCC Technology Architecture Page 60

The integration environment will be of particular importance because of the distributed nature
of the development effort for the assessment system. Multiple vendors will deliver components
(or groupings of components) at different points in time and the integration environment will
be used to validate interoperability among components.

PARCC Technology Architecture Page 61

3. INTEGRATION ARCHITECTURE PLAN

This section outlines the guidelines and recommended approaches to integration, movement,
and security of the PARCC Assessment System data, both inside and outside of the assessment
system. It also provides a technology integration template to be used by vendors to ensure that
their offerings comply with assessment system architecture.

3.1 DATA INTEGRATION

The PARCC Assessment System will need to integrate data from a variety of sources within the
assessment system itself as well as external data sources (e.g., student information systems,
item and test authoring systems, scoring engines, and state-level data warehouses). As
described in Interoperability Standards Review, industry-standard high-level data standards
such as APIP, QTI, and CEDS will be used for data representation and data transfer between
those systems.

DATA INTEGRATION WITHIN PARCC ASSESSMENT SYSTEM COMPONENTS

Data in the PARCC Assessment System will be stored in three major data hubs: the Operational
Data Store (ODS), the Data Warehouse (DW), and the Item/Test Bank. Individual components
may opt to use their own independent data stores to keep transient data while the component
is performing its functions.

Internal components developed as part of a particular grouping (see Component Dependency
Matrix in High-level Project Portfolio Schedule) will most likely use a common data store for
transient data and will have direct, low-level access to the ODS, so data integration between
these components will be realized directly through the common data storage. This will reduce
component response times, thus improving overall system performance.

External components and internal components from different component groupings will use
higher-level protocols to exchange data, either in real-time or through batch updates. They can
do this using Web services or ETL tools (see “Data Movement” on page 62).

DATA INTEGRATION WITH MEMBER STATES’ EXISTING SYSTEMS

Existing student information systems (SIS) at the state level will provide core student data and
other data needed for the operation of the PARCC Assessment System. The test registration
process executed through the Test Registration component will use the industry-standard SIF
protocol to pull data from the state SIS. This could be implemented as either a real-time or an
asynchronous batch process, depending on the availability of the state SIS.

PARCC Technology Architecture Page 62

3.2 DATA MOVEMENT

The “Data Movement Model” section in the Information Architecture document outlines the
different types of data produced and consumed in the PARCC Assessment System as well as
how this data moves through the different components and subsystems, both internal and
external, using industry-standard data-exchange protocols such as APIP and QTI. This section
focuses on the tools and technologies that can be used to facilitate the technical movement of
data. It directly addresses the technical aspects related to use cases in functional areas
(described in High-level Application Architecture):

 004 – Content Movement

 014 – Data Export

Data movement between assessment system components during real-time interactions, such
as submitting authored item data from the Item Authoring component to the Item/Test Bank
component or submitting items from the Test Delivery component to the Operational Data
Store component, can be implemented via standard service-oriented technology using Web
services (i.e., SOAP/REST). Payloads will conform to the APIP/QTI data standards. Security and
transactions would be handled through the respective WS-Security protocols.

Moving data from the Operational Data Store component to the Data Warehouse component
would best be accomplished using an extract, transform, and load (ETL) tool. ETL tools are used
to provide continuous or batch-level movement of data from one data source/data store to
another. During the ETL process, data is extracted from one or many sources, transformed and
normalized through business rules, and then loaded into the target data store. Typically the
target data store is a data warehouse but it could be any system that can consume the data.

3.3 DATA SECURITY

Data storage and movement in the PARCC Assessment System need to adhere to applicable
regulatory constraints (e.g., FERPA and COPPA). The necessary security mechanisms need to be
in place when storing and moving most data entities, especially student data and test results
data. Hashing and encryption techniques will be used when sensitive data is stored in all data
stores, and secure data transfer protocols (e.g., SSL, HTTPS, and WS-Security) will be used when
data is transferred from one component to another. In addition, any transient data should be
subject to periodic purging to minimize the risks of unauthorized access.

Table 5 – Data Security Life Cycle Phases and Activities shows the data security life cycle phases
based on a definition by Securosis (https://securosis.com/blog/data-security-lifecycle-2.0) and
related activities that occur during each phase. The security implementation of the assessment
system must ensure that at a minimum all of those activities occur as described.

https://securosis.com/blog/data-security-lifecycle-2.0

PARCC Technology Architecture Page 63

Table 5 – Data Security Life Cycle Phases and Activities

Activities/Phases Create Store Use Share Archive Destroy

Classify

Assign Rights

Access Controls

Encryption

Rights Management

Content Discovery

 Activity Monitoring

Logical Controls

Application Security

Asset Management

Crypto-Shredding

 Secure Deletion

Depending on the deployment model chosen (internal IT infrastructure, third-party hosting, or
cloud deployment), the burden of ensuring data security may lie on PARCC, the third-party
hosting provider, or the cloud infrastructure provider. In the internal IT infrastructure
deployment model, PARCC will bear all of the security responsibility. In cloud deployments,
PARCC’s responsibility for data security will be higher if the IaaS service model is chosen. This is
a trade-off between the flexibility of the IaaS service model and the higher burden of data
security (and other infrastructure concerns) that will be imposed on PARCC. This trade-off is
summarized best by Figure 22 – Security in Cloud Deployments Diagram, taken from the Cloud
Security Alliance’s Security Guidance for Critical Areas of Focus in Cloud Computing, V2.1, 2009.

PARCC Technology Architecture Page 64

Figure 22 – Security in Cloud Deployments Diagram

Integration & Middleware

APIs

Core Connectivity & Delivery

Abstraction

Hardware

Facilities

P
la

tf
o

rm
-A

s-
A

-S
er

vi
ce

 (
P

aa
S)

In
fr

as
tr

u
ct

u
re

-A
s-

A
-S

e
rv

ic
e

(I
aa

S)

Presentation
Modality

Presentation
Platform

APIs

Applications

Data Metadata Content

Integration & Middleware

APIs

Core Connectivity & Delivery

Abstraction

Hardware

Facilities

So
ft

w
ar

e
-A

s-
A

-S
er

vi
ce

 (
Sa

aS
)

P
la

tf
o

rm
-A

s-
A

-S
er

vi
ce

 (
P

aa
S)

In
fr

as
tr

u
ct

u
re

-A
s-

A
-S

e
rv

ic
e

(I
aa

S)

APIs

Core Connectivity & Delivery

Abstraction

Hardware

Facilities

In
fr

as
tr

u
ct

u
re

-A
s-

A
-S

e
rv

ic
e

(I
aa

S)

Build It In

RFP/Contract
It In

The lower down the stack the Cloud
Provider stops, the more security the
consumer is tactically responsible for
implementing and managing

The PARCC Assessment System security design must address the following concerns if cloud
deployment is utilized:

 PARCC must know the geographic location of the data. This must be stipulated in the SLA
and the relevant contracts.

 Understand all circumstances wherein the cloud provider could be obligated to disclose
assessment system data.

 PARCC should maintain a “Default Deny All” policy for both PARCC staff and cloud service
provider staff. In such a policy, by default, no access to any PARCC data is allowed to
anyone. Access to specific data is granted to specific PARCC and cloud service provider staff
only after a corresponding request has been formally approved by PARCC’s data
administration body. This should be stipulated in the contract.

 All assessment system data (i.e., data at rest and data in transit) should be encrypted.

 Require that cloud service provider does not commingle backed-up data with other
customers.

 Understand cloud provider policies and processes for data retention and destruction.

 Applications should use end-to-end transport level encryption (SSL, TLS, IPSEC) to secure
data in transit between applications deployed in the cloud.

PARCC Technology Architecture Page 65

3.4 API DESIGN GUIDELINES FOR VENDORS

The application programming interface (API) is essentially the programming contract between
two entities (i.e., systems, components, etc.) communicating with one another using an agreed-
upon protocol. This protocol would specify, for example, the name of the operations, the
sequence in which they execute, and the format of the data exchanged.

In an API contract, the producer (i.e., the entity creating the API) announces a public interface
containing the advertised functionality, and the consumer entity uses the API to access the
functionality advertised by the producer. Either of the two entities can be a producer or
consumer, depending on which entity initiates the conversation.

In this context, the PARCC Assessment System can be either the producer of an API—wherein
one or more of the assessment system components advertise certain functionality made
available to third-party systems to consume—or the consumer of an API exposed by a third-
party component made by an external vendor.

- An example of a third-party component playing the role of a consumer would be an external
Item Authoring component which will use the API of the internal Item/Test Bank
component to access certain functionality advertised by the Item/Test Bank component,
such as the ability to store a new test item to the Item/Test Bank or the ability to update an
existing test item in the Item/Test Bank.

- An example of a third-party component playing the role of a producer would be an external
student information system exposing its API to retrieve student information which will be
consumed by the Test Registration component to manage student registration.

Vendors who will be developing external components interfacing with the assessment system,
as well as vendors who will be developing some or all of the internal components of the
assessment system, need to incorporate the following general guidelines when designing their
components so that they will be compatible with PARCC Technology Architecture:

- PARCC will use Web services (both REST and SOAP) as underlying mechanisms for
communication between loosely-coupled internal and external components. Any third-
party product should be capable of utilizing those protocols as well as creating/consuming
the related artifacts for those protocols (e.g., WSDLs) when creating components that need
to communicate with assessment system components.

- PARCC will utilize comma-separated values (CSV), Extensible Markup Language (XML), and
Java Script Object Notation (JSON) as underlying data structure formats for both input and
output data exchanged between communicating components. Third-party products should
be capable of parsing and consuming data using these formats.

PARCC Technology Architecture Page 66

- PARCC will use the OAuth security framework v1.0 (and v2.0 whenever it is released,
tools.ietf.org/html/rfc5849) for authentication/authorization tasks—in addition to other
security frameworks. Vendors of third-party components should be prepared, at a
minimum, to incorporate OAuth into their components as well. Vendors should also be
prepared to incorporate the other security frameworks that PARCC may be using, as they
become implemented.

In addition to this, vendors are encouraged to abide by best practices and guidelines for API
design when they expose their functionality for the assessment system to consume. Such best
practices and guidelines include:

- Do not expose more than you want. A minimal API is one that has as few classes as possible
and as few public members per class as possible. This makes the API easier to understand
and maintain. An API should be as small as possible.

- APIs should be complete and provide all expected functionality.

- APIs should be easy to memorize. Choose consistent and precise naming conventions. Use
recognizable patterns and concepts and avoid abbreviations. Be consistent with the
meaning of words used. The same word should mean exactly the same thing across your
layers.

- Choose appropriate names for classes, functions, and parameters. It should be clear from
the name whether a function has side effects or not. Parameter names are an important
source of information to the programmer, and it is worth spending some time naming
parameters appropriately.

- Write documentation. An API is supposed to be read and understood by others. Try to be
succinct and precise and cover every single function and class.

- Avoid long parameter lists. If you have long parameter lists, your API will not be usable
without constant reference to its documentation, because most programmers cannot
remember long parameter lists. You can avoid long parameter lists by using helper classes
or structures to hold aggregates of parameters.

- Prefer a factory method to a constructor. It is more flexible to expose a factory method
than to expose a constructor.

- Always version the API. This allows for traceability and flexibility.

- Support multiple data formats.

- Provide robust failure handling.

- Ensure that data-modifying operations are idempotent. Idempotence is a property of an
operation wherein multiple applications of the operation do not change the end result
beyond the initial application. Because the network is not always available/reliable, certain
API calls can be expected to get retried. In these cases, the API should be capable of
detecting and handling duplicate calls reliably without causing data inconsistencies.

http://tools.ietf.org/html/rfc5849

PARCC Technology Architecture Page 67

4. RELATED DOCUMENTS

Table 6 – Reference Materials lists the supporting PARCC Assessment System Architecture
documents referenced in this document.

Table 6 – Reference Materials

Title Description

Invitation to Negotiate – Technology
Architecture, Interoperability Standards
Development and System Implementation
Services, ITN 2012-22

Florida Department of Education solicitation
for the PARCC Architecture Program.

Technology Architecture, Interoperability
Standards Development and System
Implementation Services – Technical Reply,
Final (Dated 04-10-12)

Pacific Metrics/IBM’s technical response to
ITN 2012-22.

PARCC Assessment System Architecture Key
Technology Priorities Summary

The deliverable that summarizes
recommendations, approaches, and
considerations for handling PARCC’s key
technology priorities for sustainability and
low-cost impact.

PARCC Assessment System Architecture High-
level Application Architecture

The deliverable that defines the high-level
application architecture by describing all
applications that compromise the
assessment system architecture and high-
level functional concerns for the
architecture.

PARCC Assessment System Architecture
Information Architecture

The deliverable that defines the data aspects
of the overall assessment system
architecture by describing where data
resides, how data is delivered and
maintained, how data will be managed, and
how data will be accessed for reporting.

PARCC Assessment System Architecture High-
level Project Portfolio Schedule

An MS Project schedule for the development
of the PARCC Assessment System.

PARCC Assessment System
Architecture Component-based
Dependency Matrix

The deliverable that defines the
procurement-related dependencies among
the components of the assessment system.

PARCC Technology Architecture Page 68

Title Description

PARCC Assessment System Architecture
Interoperability Standards Review

The deliverable that defines the
recommended interoperability standards for
the components of the assessment system.

PARCC Assessment System Technology
Standards and Protocols Options

The deliverable that defines the options and
recommendations for technology standards
and protocols to be used in the PARCC
Assessment System.

PARCC Technology Architecture Page 69

5. EXTERNAL SOURCES

This section provides references to some of the external sources used in the writing of this
document.

 API design:

- wiki.netbeans.org/API_Design
- www.symlab.org/wiki/index.php/Writing_portable_code_and_maintaining_ports

 Cloud security:
Security Guidance for Critical Areas of Focus in Cloud Computing 2.1,
Cloud Security Alliance

- cloudsecurityalliance.org/csaguide.pdf

- wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Fra
mework

 Database storage:
- http://blog.sphereinc.com/2012/03/pros-and-cons-of-using-nosql-solutions/

 Definition of cloud computing:
National Institute of Standards and Technology (NIST)

 TEI interactive content and related technologies:

- www.technologyreview.com/view/426083/html5-triumphant-silverlight-flash-
discontinuing/

- www.techrepublic.com/blog/webmaster/how-to-replace-flash-and-silverlight-with-
html5/995

- edge.adobe.com/whatisedge.html

- www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-HTML5-Tool-
as-OpenSource-Answer-to-Flash-Silverlight-669762/

 Definition of idempotence:
en.wikipedia.org/wiki/Idempotence

 FURPS:
Grady, Robert; Caswell, Deborah (1987). Software Metrics: Establishing a Company-wide
Program. Prentice Hall.

 J2EE:
- java.sun.com/j2ee

 Monitoring and management tools:

- www.monitortools.com/servicelevel/

- www.slideshare.net/tomdc/open-source-monitoring-tools-shootout

http://wiki.netbeans.org/API_Design
http://www.symlab.org/wiki/index.php/Writing_portable_code_and_maintaining_ports
https://cloudsecurityalliance.org/csaguide.pdf
https://wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Framework
https://wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Framework
http://blog.sphereinc.com/2012/03/pros-and-cons-of-using-nosql-solutions/
http://www.technologyreview.com/view/426083/html5-triumphant-silverlight-flash-discontinuing/
http://www.technologyreview.com/view/426083/html5-triumphant-silverlight-flash-discontinuing/
http://www.techrepublic.com/blog/webmaster/how-to-replace-flash-and-silverlight-with-html5/995
http://www.techrepublic.com/blog/webmaster/how-to-replace-flash-and-silverlight-with-html5/995
http://edge.adobe.com/whatisedge.html
http://www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-HTML5-Tool-as-OpenSource-Answer-to-Flash-Silverlight-669762/
http://www.eweek.com/c/a/Application-Development/IBM-Launches-Maqetta-HTML5-Tool-as-OpenSource-Answer-to-Flash-Silverlight-669762/
http://en.wikipedia.org/wiki/Idempotence
http://java.sun.com/j2ee
http://www.monitortools.com/servicelevel/
http://www.slideshare.net/tomdc/open-source-monitoring-tools-shootout

PARCC Technology Architecture Page 70

- docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

- cee.mitre.org/docs/Common_Event_Expression_White_Paper_June_2008.pdf

 Network requirements:

- en.wikipedia.org/wiki/Bandwidth_%28computing%29

- technet.microsoft.com/en-us/library/cc785130%28v=ws.10%29.aspx

- en.wikipedia.org/wiki/Bit_rate#Multimedia

- www.adobe.com/devnet/flash/apps/flv_bitrate_calculator.html

- Security:

- Guide to Security for Full Virtualization Technologies,

- National Institute of Standards and Technology (NIST), January 2011.

 Web services, REST and SOAP:

- http://www.infoq.com/articles/rest-soap-when-to-use-each

- http://nordsc.com/ext/classification_of_http_based_apis.html#uri-rpc

- Roy Fielding’s dissertation (where REST is defined):

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

- http://wanderingbarque.com/nonintersecting/2006/11/15/the-s-stands-for-simple/

- http://duncan-cragg.org/blog/post/setting-data-rest-dialogues/

- http://en.wikipedia.org/wiki/SOAP

- http://uddi.org/pubs/uddi-tech-wp.pdf

 Software architecture:

- Draft Technical Standard SOA Reference Architecture,

- The Open Group:

www.opengroup.org/projects/soa-ref.../soa-ra-public-050609.pdf

http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://cee.mitre.org/docs/Common_Event_Expression_White_Paper_June_2008.pdf
http://en.wikipedia.org/wiki/Bandwidth_%28computing%29
http://technet.microsoft.com/en-us/library/cc785130%28v=ws.10%29.aspx
http://en.wikipedia.org/wiki/Bit_rate#Multimedia
http://www.adobe.com/devnet/flash/apps/flv_bitrate_calculator.html
http://www.infoq.com/articles/rest-soap-when-to-use-each
http://nordsc.com/ext/classification_of_http_based_apis.html#uri-rpc
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://wanderingbarque.com/nonintersecting/2006/11/15/the-s-stands-for-simple/
http://duncan-cragg.org/blog/post/setting-data-rest-dialogues/
http://en.wikipedia.org/wiki/SOAP
http://uddi.org/pubs/uddi-tech-wp.pdf
http://www.opengroup.org/projects/soa-ref.../soa-ra-public-050609.pdf

PARCC Technology Architecture Page 71

6. TERMS AND ACRONYMS

Table 7 – Definition of Terms and Acronyms provides definitions for the terms and acronyms
used in this document.

Table 7 – Definition of Terms and Acronyms

Term/Acronym Definition Description

.NET .NET A set of Microsoft-developed, Windows-based,
technologies that provide enterprise-scale IT
capabilities similar to J2EE.

ACID Atomicity, Consistency,
Isolation, Durability

A set of properties which define the level of
reliability of database transactions.

ADSL Asymmetric Digital
Subscriber Line

A type of digital subscriber line (DSL)
technology that enables faster data
transmission over copper telephone lines.

API Application Programming
Interface

A list of operations for a component or sub-
system that can be used by other components
or sub-systems.

APIP Accessible Portable Item
Protocol

A standard data file format with a focus on
accessibility used for exchanging digital test
items between assessment systems and
item/test banks.

BPEL Business Process
Execution Language

A language used to define the details of a
business process.

BPM Business Process
Management

A management approach which promotes
business efficiency, customer focus, and tight
integration with technology to achieve
continuous process improvement.

BPMN Business Process Model
and Notation

A graphical notation for describing the steps in
business processes and their interaction with
each other.

PARCC Technology Architecture Page 72

Term/Acronym Definition Description

C# C# A Microsoft-developed programming language
similar to Java.

C++ C++ A general purpose programming language with
object-oriented features.

CEDS Common Education Data
Standards

A data standard which specifies a set of the
most commonly used education data elements
used to exchange data within and across
states, as well as for federal reporting.

CEE Common Event Expression An initiative by a community of vendors,
researchers. and end users with the goal of
standardizing the representation and exchange
of logs from electronics systems.

COPPA Children’s Online Privacy
Protection Act

A U.S. federal law that places parents in control
of what information is collected online from
children under 13 years of age.

COTS Commercial off-the-shelf A Federal Acquisition Regulation (FAR) term
defining a non-developmental item (NDI) of
supply that is both commercial and sold in
substantial quantities in the commercial
marketplace, and that can be procured or
utilized under government contract in the
same precise form as available to the general
public.

CP Content Packaging A standard for distribution of distributed digital
learning content and resources.

CPU Central Processing Unit The main chip in a computer that executes
computing instructions utilizing data in
memory.

CSS Cascading Style Sheets A language used for describing the
presentation features of a document.

PARCC Technology Architecture Page 73

Term/Acronym Definition Description

CSV Comma-separated values A data format consisting of rows of data, each
containing values separated by commas.

DAS Direct Attached Storage A system of multiple physical disk drives
directly connected to the computer.

DS1/T1 Digital Signal 1/T-carrier 1 A high-speed connection capable of
transmitting data up to 1.5 Mbps.

DS3/T3 Digital Signal 3/T-carrier 3 A high-speed connection capable of
transmitting data up to 45 Mbps.

DSL Digital Subscriber Line A family of technologies that provide internet
access by transmitting digital data over the
wires of a local telephone network.

DW Data Warehouse A type of database used to store reporting and
other (typically multi-dimensional) data.

DW/R Data
Warehouse/Reporting

A combination of two types of non-
transactional data stores.

EIS Enterprise Information
System

An information system offering high quality of
service in a large data volume environment
typically supporting the business needs of a
large organization.

EJB Enterprise Java Beans A server-side component architecture, part of
the Java EE specification.

ESB Enterprise Service Bus A technology that provides connectivity
between components in the enterprise.

ETL Extract, Transform, Load A type of technology used to transfer disparate
data among systems.

FC Fibre Channel A very fast type of network technology used for
storage networking.

PARCC Technology Architecture Page 74

Term/Acronym Definition Description

FERPA Family Educational Rights
and Privacy Act

A U.S. federal law that protects the privacy of
student education records.

FTP File Transfer Protocol Standard network protocol used to transfer
files across the network from one machine to
another machine.

FURPS Functionality, Usability,
Reliability, Performance,
and Supportability

A framework for categorizing system
requirements into five categories:
Functionality, Usability, Reliability,
Performance, and Supportability.

HTML5 HyperText Markup
Language Revision 5

The 5th revision of the HTML standard still
under development which aims to provide
more standard and streamlined support for
multimedia and complex Web applications
across a variety of platforms and devices.

HTTP HyperText Transfer
Protocol

An application protocol for distributed
information systems communicating over the
World Wide Web.

HTTPS HyperText Transfer
Protocol Secure

A secure version of the HTTP protocol. It uses
SSL/TLS protocol on top of the HTTP protocol
to provide secure communication between a
Web site and a Web server.

I/O Input/Output The communication between an information
processing system (such as a computer) and
the outside world.

IaaS Infrastructure-as-a-service A type of deployment service in a cloud
infrastructure wherein the user has the most
control over the application deployment as
well as many aspects of the hardware
infrastructure.

ICMP Internet Control Message
Protocol

One of the core Internet protocols used to
send error messages indicating a service is not
available or a host could not be reached.

PARCC Technology Architecture Page 75

Term/Acronym Definition Description

IDE Integrated Development
Environment

A software application that developers use to
write code in different languages.

IOPS Input/Output operations
per second

A performance measurement used to
benchmark computer storage devices like hard
disk drives, solid state drives, and storage area
networks.

IPMI Intelligent Platform
Management Interface

A standard computer systems interface used
for computer monitoring and management. It
is a message-based, hardware-level
specification used to monitor hardware
characteristics like system temperature,
voltage levels, fan operation, power supplies,
etc.

IPSEC Internet Protocol Security A protocol for securing Internet Protocol (IP)
communications by authenticating and
encrypting each packet of a communication
session.

iSCSI Internet Small Computer
System Interface

A storage networking standard for linking data
storage devices. It uses the IP protocol to carry
SCSI protocol commands over IP networks.

ISDN Integrated Services Digital
Network

A set of communications standards for
simultaneous digital transmission of voice,
video and data over the traditional public
switched telephone network.

ITN Invitation to Negotiate The Florida Department of Education’s
solicitation for the PARCC Assessment System
Architecture program.

J2EE Java 2 Enterprise Edition A set of Java-based technologies providing
enterprise-scale IT capabilities like server-side
business components development,
messaging, transactions, database connectivity,
and many others.

PARCC Technology Architecture Page 76

Term/Acronym Definition Description

Java EE Java Enterprise Edition An equivalent term for J2EE. Sun Microsystems
changed the term J2EE to Java EE with version
5 of the platform.

JMS Java Message Service A Java-based messaging platform which is part
of Java EE. It allows J2EE application
components to create, send, and receive
messages, enabling the components to be
loosely-coupled and asynchronous.

JMX Java Management
Extensions

A Java technology and API for providing JVM
management and monitoring status.

JSON JavaScript Object Notation A data format used to describe structured data
that is readable by both humans and machines.
Its syntax is “lighter” than the XML format
which fulfills the same purpose.

JSP Java Server Pages A Java technology for creating dynamically
generated Web pages.

JVM Java Virtual Machine The runtime environment wherein Java
programs execute.

LAN Local Area Network A computer network that interconnects
computers in a limited area such as a home,
school, computer laboratory, or office building.

MIB Management Information
Base

A set of data elements describing management
information available for network devices. It is
used to manage the entities in an SNMP-
managed network.

MVC Model-view-controller A design pattern for constructing systems that
separates the implementation into three
layers.

NAS Network Attached Storage File-level computer data storage accessible
over the network using file-sharing protocols.

PARCC Technology Architecture Page 77

Term/Acronym Definition Description

NE Network Element A device in an SNMP-managed system.

NIST National Institute of
Standards and Technology

The U.S. federal organization responsible for
creating national science and technology
measurements and standards.

NMS Network Management
System

A combination of hardware and software used
to monitor and administer a computer network
or system.

NNTP Network News Transfer
Protocol

An early Internet application protocol used to
exchange data between news servers.

NoSQL No Structured Query
Language

A type of database which does not use the
Structured Query Language for manipulating its
data, and which often does not implement the
full set of the ACID properties. These reduced
capabilities are offset by big gains in scalability
and performance.

OASIS Organization for the
Advancement of
Structured Information
Standards

A global consortium that drives the
development, convergence, and adoption of e-
business and web service standards.

OC Optical Carrier A designation used to specify the speed of
fiber-optic networks (i.e., transmission speed):

 OC-1. Up to 51.85 Mbps

 OC-3. Up to 155.52 Mbps

 OC-12. Up to 622.08 Mbps

ODS Operational Data Store A database used to store transient data during
an assessment.

OFM Oracle Fusion Middleware A set of middleware products from Oracle
Corporation.

OLTP Online Transaction
Processing

A type of processing between transaction-
oriented applications across networks.

PARCC Technology Architecture Page 78

Term/Acronym Definition Description

OMG Object Management
Group

A consortium dedicated to setting standards
for distributed object-oriented systems.

OOD Object-oriented Database A type of database which attempts to
represent and store data in a manner which is
very close to how Object-Oriented Languages
represent and store data in memory.

OOP Object-oriented
Programming

A type of programming wherein data in
computer memory is represented in a
hierarchical fashion using techniques such as
inheritance and encapsulation.

OPS Operations per Second A measure of a computer’s performance,
usually its processing speed.

ORM Object-relational Mapper A software layer that sits between an object-
oriented language and a relational database
and acts as a data adapter.

OS Operating System The main (i.e., kernel) software that drives a
computer.

OW2 ObjectWeb 2 A consortium devoted to producing open-
source middleware.

PaaS Platform-as-a-service A type of deployment for service in a cloud
infrastructure wherein the user has the most
control over the application deployment.

POP3 Post Office Protocol 3 An application-layer Internet protocol used by
client email programs to retrieve email
messages from an email server over a TCP/IP
connection.

PPP Point-to-point Protocol A data link protocol used to establish direct
connection between two network nodes.

PARCC Technology Architecture Page 79

Term/Acronym Definition Description

QTI Question and Test
Interoperability

A standard format for representing assessment
content and results created by IMS Global
Learning Consortium.

RAID Redundant Array of
Independent Disks

A storage technology that combines multiple
disk drives into a single logical unit, providing
greater reliability through increased
redundancy.

RBAC Role-based Access Control An access control mechanism that defines the
functionality that an end user can access based
on an assigned role.

RDB Relational Database A type of database wherein data is represented
and stored as tables of rows and columns.

REST REpresentational State
Transfer

A protocol used to invoke Web services that is
simpler to use than SOAP.

RPM Revolutions per minute A measure of the frequency of rotation.

SaaS Software-as-a-service A type of deployment for service in a cloud
infrastructure wherein the user does not have
much control over application deployment.

SAML Security Assertion Markup
Language

A language used to express the interactions
between several systems during a single sign-
on authentication.

SAN Storage Area Network A storage infrastructure containing multiple,
physical disk drives, processors, network, and
other components serving as a single storage
device accessible through the network.

SAS Serial Attached SCSI A point-to-point communication protocol for
moving data between storage devices like hard
drives and tape drives.

SATA Serial AT Attachment A computer interface used to connect a host
machine to mass storage devices.

PARCC Technology Architecture Page 80

Term/Acronym Definition Description

SCSI Small Computer System
Interface

A set of standards for connecting and
transferring data between computers and
peripheral devices, including storage devices.

SIF Schools Interoperability
Framework

A specification facilitating data sharing and
reporting between applications in K through 12
instructional and administrative environments.

SIS Student Information
System

A state-level system that stores and maintains
student data.

SLA Service Level Agreement A contract where the level of service is formally
defined between a customer and a service
provider.

SLIP Serial Line Internet
Protocol

A version of the Internet protocol designed to
work over serial ports and modems.

SMTP Simple Mail Transfer
Protocol

Internet standard for transmission of electronic
mail.

SNMP Simple Network
Management Protocol

A network management and monitoring
protocol.

SOA Service-oriented
architecture

A technology for connecting disparate IT
components and systems.

SOAP Simple Object Access
Protocol

An XML-based protocol used to invoke Web
services.

SQL Structured Query
Language

The main language used to manipulate data in
a relational database.

SSD Solid-state Drive A disk drive technology that eliminates the
disadvantages of classical electro-mechanical
drives.

PARCC Technology Architecture Page 81

Term/Acronym Definition Description

SSH Secure Shell A network protocol for secure data
communications, remote services, and
command execution between two networked
computers.

SSL Secure Sockets Layer A cryptographic protocol providing
communication security over the Internet. This
protocol has been superseded by Transport
Layer Security (TLS).

SSO Single Sign-on An authentication technology that enables a
user to log into one system and automatically
be recognized in other systems without the
need to log in again.

TCP/IP Transmission Control
Protocol/Internet Protocol

The two most important low-level protocols of
the Internet protocol suite. They specify how
data should be formatted, addressed,
transmitted, routed and received at the
destination point.

TEI Technology-enhanced
Item

A new type of test item featuring interactive
content enabled by certain underlying
technology platforms (e.g., Adobe Flash,
Microsoft Silverlight, Oracle Java Applets, and
HTML5).

TLS Transport Layer Security The cryptographic protocol that replaced SSL.

UDDI Universal Description,
Discovery, and Integration

A standard registry used to discover services in
an SOA Web services-based architecture.

UI User Interface The way a human interacts with a computer.

URL Uniform Resource Locator A character-string reference to an Internet
resource.

VM Virtual Machine A simulation of a physical computer that runs
as software inside another physical computer.

PARCC Technology Architecture Page 82

Term/Acronym Definition Description

WAN Wide Area Network A telecommunications network covering a
broad area with links across regional or
national boundaries.

WDSL Web Service Definition
Language

A language used to describe the functionality
of a service.

WLAN Wireless Local Area
Network

A network linking two or more devices using s
wireless distribution method.

WMI Windows Management
Instrumentation

The infrastructure for the management of data
and operations in the Windows operating
system.

WS-Security Web Services Security An extension to the SOAP protocol providing
security to Web services published by the
OASIS security group.

XML Extensible Markup
Language

A textual data format that is used to describe
complex data structures using tags, elements,
and attributes.

XMPP Extensible Messaging and
Presence Protocol

An XML-based open communications protocol
for message-oriented middleware. This
protocol was originally named Jabber and used
for instant messaging.

